
Quantiles in the coupon collector problem

The classical “coupon collector” problem can be rephrased as follows. We
repeatedly roll a balanced n-sided die, and we let X be the number of rolls
needed to see each face at least once. Describe the distribution of the random
variable X.

If we just want the expected value of X, the standard trick is to write X =
X1 + · · ·+ Xn where Xi is the number of “extra” rolls needed to see the ith
“new” face after the (i−1)th “new” face has been seen. Then X1, X2, . . . , Xn

are independent geometric variables with parameters n
n
, n−1

n
, . . . , 1

n
, so we

have E(X) = n(1+ 1
2

+ · · ·+ 1
n−1

+ 1
n
) ≈ n log n. (Here and throughout, “log”

means natural log.)

Suppose we want an expression for

P = P(X > m) = P(at least one face has not been seen in the first m rolls).

For i = 1, . . . , n, let Ai be the event that face i has not been seen in the first
m rolls. Using inclusion-exclusion, we have

P = P(A1 ∪ · · · ∪ An) = P(A1) + · · ·+ P(An)

−
(
P(A1 ∩ A2) + · · ·+ P(An−1 ∩ An)

)
+ · · ·

+ (−1)n−1
(
P(A1 ∩ · · · ∩ An)

)
= n

(
1− 1

n

)m

−
(

n

2

)(
1− 2

n

)m

+ · · ·

+ (−1)n−1

(
n

n

)(
1− n

n

)m

=
n∑

k=1

(−1)k−1

(
n

k

)(
1− k

n

)m

.
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Now let m = n log n + cn where c is a constant. In 1961, Erdős and Rényi
[1] observed that since(

1− k

n

)n(log n+c)

≈ (e−k)log n+c =
1

nk
(e−c)k

and since

(
n

k

)
≈ nk

k!
, we can say

P ≈
n∑

k=1

(−1)k−1 nk

k!

1

nk
(e−c)k =

n∑
k=1

(−1)k−1 (e−c)k

k!
≈ 1− e−e−c

.

However, when making this rigorous, the details are nontrivial. We follow
the presentation in Section 3.6.3 of Motwani and Raghavan [2].

Lemma. If 0 < k ≤ k2 < n, then

e−k
(

1− k2

n

)
<
(

1− k

n

)n

< e−k.

Proof. We start with the series expression

log(1− x) = −x− x2

2
− x3

3
− x4

4
− · · ·

which is valid for −1 < x < 1. This implies

log
(

1− k

n

)
= −k

n
− k2

2n2
− k3

3n3
− k4

4n4
− · · ·

=⇒ n log
(

1− k

n

)
= −k − k2

2n
− k3

3n2
− k4

4n3
− · · ·

so certainly n log
(

1− k

n

)
< −k, which implies

(
1− k

n

)n

< e−k. Also,

n log
(

1− k

n

)
> −k − k2

n
− k4

2n2
− k6

3n3
− · · ·

=⇒ n log
(

1− k

n

)
> −k + log

(
1− k2

n

)
which implies e−k

(
1− k2

n

)
<
(

1− k

n

)n

, completing the proof of the lemma.
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Now let ε be any positive real number. There exists a positive integer T such

that
t∑

k=1

(−1)k−1 (e−c)k

k!
is within

ε

2
of 1− e−e−c

for all t > T .

Let 2r − 1 and 2r be greater than T . By the Bonferroni inequalities,

A :=
2r∑

k=1

(−1)k−1

(
n

k

)(
1− k

n

)m

is an underestimate for P , and

B :=
2r−1∑
k=1

(−1)k−1

(
n

k

)(
1− k

n

)m

is an overestimate for P .

Now suppose n > 4r2. By the lemma, for each k = 1, . . . , 2r, we have

e−k
(

1− k2

n

)
<
(

1− k

n

)n

< e−k

=⇒ (e−k)log n+c ·
(

1− k2

n

)log n+c

<
(

1− k

n

)m

< (e−k)log n+c

=⇒ 1

nk
(e−c)k

(
1− k2

n

)log n+c

<
(

1− k

n

)m

<
1

nk
(e−c)k

=⇒
(

n

k

)
1

nk
(e−c)k

(
1− k2

n

)log n+c

<

(
n

k

)(
1− k

n

)m

<

(
n

k

)
1

nk
(e−c)k.

It is straightforward to show lim
n→∞

(
n

k

)
1

nk
=

1

k!
and lim

n→∞

(
1 − k2

n

)log n

= 1.

It then follows that we have lim
n→∞

(
n

k

)(
1− k

n

)m

=
(e−c)k

k!
for each k.

We now choose n large enough that

(
n

k

)(
1 − k

n

)m

is within
ε

4r
of

(e−c)k

k!
for each k = 1, . . . , 2r.
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It then follows that A is within
ε

2
of

2r∑
k=1

(−1)k−1 (e−c)k

k!
, and that B is within

ε

2
of

2r−1∑
k=1

(−1)k−1 (e−c)k

k!
.

But then both A and B are within ε of 1−e−e−c
. This completes the rigorous

proof that
lim

n→∞
P(X > n log n + cn) = 1− e−e−c

.
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