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Abstract: There is a rich literature that concerns the minimum value of
expressions of the form cosa6 + -+ + cosa,f (where a; < -+ < a, are
positive integers) and the question of what choice of {ay, ..., a,} maximizes
that minimum. A related problem concerns the maximum minimum (on the
unit circle) of expressions of the form [z% 4 - - + 2|, If we define

A(n) =— sup min(cosaif + -+ cosa,b),
a1<-<Qn

,u(n) = sup min |z“1 T Zan| 7
a1<-<ap 121=1
then one can ask either for bounds on the functions A(n) or u(n), or particular

values of A(n) or u(n). Other authors have found the values of 1(3) and p(4).
In this paper, we find the values of A\(2) and A(3).

1 Introduction

We define a cosine polynomial of length n to be any expression of the
form
cos a6 + cosasf + - - - + cos a, b

where a1 < - -+ < a, are integers > 1, and we define a Newman polynomial
of length n to be any expression of the form

Zal +Za2+"'+2an
where a; < --- < a, are integers > 0.

We are interested in the minimum value of a length n cosine polynomial, and
the minimum modulus of a length n Newman polynomial on the unit circle
(we will denote the unit circle by S). We want to maximize those minima.



We define

L(ay,...,a,) = mgin(cos a0+ - + cosa,0)
M(ay, ... a,) :mié1|z“1 + -4 20
z€E

so —n < L(ay,...,a,) <0and 0 < M(aq,...,a,) <n. We then define

A(n) = —sup L(ay, ..., a,)
pu(n) =sup M(ayq,...,an)

where the supremum in the definition of A is taken over all sets of n distinct
positive integers, and the supremum in the definition of u is taken over all
sets of n distinct nonnegative integers. Note that A(n) and u(n) are both
nonnegative.

Both A(n) and p(n) are mathematically well-defined, because we are taking
the supremum of a bounded set. However, since there are infinitely many
possible sets {ay,...,a,}, it is not obvious how to find the value of A(n) or
p(n) for a particular n in a finite number of steps.

Three types of problems we might consider are:

1. finding upper or lower bounds for the functions A(n) or u(n),
2. finding values of A\(n) or u(n) for particular n,

3. showing that one can calculate particular values of A\(n) or u(n) in a
finite number of steps.

Even proving A(n) — oo is nontrivial. This was first done by Uchiyama
and Uchiyama [7] using results of Cohen [4]; their lower bound for \(n) was
sublogarithmic. Over the years, better lower bounds for A(n) have been
found. The best lower bound currently known is due to Ruzsa [6]; it is
superlogarithmic but grows more slowly than any power of n. The best
known upper bound for A\(n) appears to be O(y/n). Chowla conjectured [3]
that this is the true rate of growth.



Less appears to be known about the growth rate of u(n). By considering
the L? norm, one can show that u(n) < /n for all n, and by considering a
particular length 9 Newman polynomial, one can show that y(n) > n%* when
n is a power of 9. In [1], Boyd considered the maximum minimum modulus
on S of Newman polynomials of degree n, but also made some conjectures
about the function denoted by p(n) in this paper. Specifically, he conjectured
that u(n) > 1 for all n > 6, and conjectured that log p(n)/logn approaches
a limit.

Some particular values of u(n) have been computed: Campbell, Ferguson,
and Forcade [2] proved that

A7 — 147
1(3) = 2—7\/_ ~ 0.607346

and Goddard [5] proved that

p(4) = min_ V1624 + 823 — 822 — 22 4 2 ~ 0.752394.

—1<z<

The current author is unaware of any proofs in the literature for particular
values of A\(n). The main results of this paper are proofs that

A(2) = 2 —1.125000  and

1T+ TV

~ 1.315565.
27

A(3)
We note that one can make plausible guesses about other values of A(n) and
pu(n) by searching cosine polynomials or Newman polynomials of bounded
degree. The conjectured values of p(5) and p(6) given below appear in [5]
and were obtained by considering a,, < 30. (There is a small error in [5]; the
author mistakenly writes the square of the conjectured value of 1(6).) The
conjectured values of A(4), A(5), and A(6) were obtained by the current author
by considering a,, < 20. It was conjectured in [5] that p(n) is monotone, but
note that if our conjectured values for \(5) and A\(6) are correct, then A(n)
is not monotone. Perhaps A(n) is eventually monotone.



n | Suspected A(n) ai,...,a, that attain
suspected optimal value

2 | 1.125000 (proved) 1,2

3 | 1.315565 (proved) 1,2,3

4 | 1.519558 1,2,3,4

5 | 1.627461 1,2,4,5.6

6 | 1.591832 1,2,4,6,7.8

n | Suspected p(n) ai,...,a, that attain
suspected optimal value

3 1 0.607346 (proved) 0,1,3

4 1 0.752394 (proved) 0,1,24

5 | 1.000000 0,1,2,6,9

6 | 1.065286 0,6,9,10,17,24
2 Results

Lemma 1. The minimum value of f(0) = cos® + cos26 is —9/8, which
occurs when cosf = —1/4.

Proof. This is an elementary exercise in trigonometric identities and calculus.

[]

Lemma 2. The minimum value of f(0) = cosf + cos 26 + cos 30 is

—17-TVT _

—1.315565
27 ’

which occurs when cosf = (—1 4 /7)/6.

Proof. This is elementary as well, and follows from writing
cos 6 4 cos 20 + cos 30 = cos O + (2cos®§ — 1) + (4cos® @ — 3cos )

and then minimizing 4¢3 4+ 2¢? —2c — 1 for —1 < ¢ < 1. ]
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The rest of this paper consists of showing that the minima appearing in
Lemmas 1 and 2 cannot be improved upon by choosing other values of the a;.

Note that it suffices to consider the case ged(ay, ..., a,) = 1. This is because
if d divides all a;, then the cosine polynomials

cosaif + -+ + cosa,b and COS%@—}----—{—COS%@

attain the same set of values.

Theorem 3. If f(f) = cos a6 + cosasf where a; < ap are relatively prime
positive integers and as > 3, then we have f(0) < —3/2 for some 6.

Proof. 1f a; and ay are both odd then f(7) = —2, so assume one of a, ay is
odd and the other is even. Now observe that if
km ) .
€S :=<— | kisan odd integer
a2
then cosasf) = —1. So it would suffice to prove that cosa;0 < —1/2 for some
es.

Case 1. Suppose a; is odd and as is even. Note that a; and 2as are relatively
prime, so we have
ais + 2ast =1

for some integers s and t. Note that s must be odd. We then have
a1s =1 — 2ast

aj(as—1)s = (ay—1) — 2ay(az—1)t

(ag—1)sm  as—1

a = m—2(ag—1)tw
a9 a9
—1 —1

ay (a2 =1)sm I integer multiple of 27
(05} (05}

( (ag—]_)Sﬂ') (a2—1 )
cos | a——— ) = cos 7T
a9 a9



Now note that a;—1 and s are both odd, so (as—1)sm/as € S. Note also
that as > 3 implies
2r  as—1

- <
3 (03}

1 -1
—— > COs (a2 7r) > —1
2 a9

Case 2. Suppose a; is even and as is odd. Since a; and ay are relatively
prime, we can write

T

so Case 1 is complete.

ais + ast = —1

for some integers s and t. Note that ¢ must be odd. We then have

a8 + Cbg(t+1) = CL2—1
ai(s+as) + as(t+1—ay) = as—1

Note that since as is odd, one of s and s+as must be odd. If s is odd, define

S/ZS
' =t+1

and if s+a» is odd, define

s’ = s+as
t/ = t+1—a1

Then s’ is odd, t’ is even, and we have

a8 + ast = as—1

s, as—1
a— +tm= s
a2 5]
/
st ax—1 . .
a— = 7 — integer multiple of 27
(05} (05}

s'm as—1
cos [ a;— ) = cos T
a2 a2

Note that s'w/ay € S, and as before, cos((ae—1)7/as) < —1/2. So Case 2 is
complete. n



The following is a consequence of Lemma 1 and Theorem 3.

Corollary 4. We have A\(2) =9/8 = 1.125.

Next, we give some lemmas that will be helpful for evaluating A(3).

Lemma 5. Suppose & is a real number, k > 2 is an integer, and m is an
integer. If m is not a multiple of k, then

Proof. This follows from the fact that the above sum is the real part of
k—1

> e (ie+ 7))

j=

]

Lemma 6. Letyy,...,yn_1 be real numbers satisfying Zj.v:_ol y; = 0. Suppose
M > 0 is a real number such that y; < M for all j (so not all y; are equal
to M ). If we have

=

1

2
N y; = KM
J

Il
=)

for some real number K (we will take K > 0), then we have y; < —K for
some j.

Proof. We use contraposition. Suppose y; > —K for all j. Then y; + K
is always positive. Now note that M — y; is always nonnegative, and is



sometimes strictly positive. We therefore have

1 N-1
~ 2 (M =y;)(y; + K) >0
=0
1 N-1
5O~k (M = Ky + KM) >0
=0
1 N-1
—= > P+ (M- K)0+KM>0
=0

N-1

1 2
KM>NjZOyj.

]

Theorem 7. Suppose f(0) = cosai6 + cosazf + cosazf where a; < ag < ag
are positive integers satisfying ged(aq, ag, az) = 1. Then for some 0, we have

- —17—7\/7%

—1.315565.
27

f0)
Proof. We split the proof into three cases:

e Case 1: a3 = a1 + ao,
e Case 2: az = 2a; or az = 2as,

e Case 3: ag ¢ {a; + ag,2a1,2as}.

Case 1. Note that if z = € € S, we have

|1 4o 4 Za1+a2‘2 _ (1 4204 Za1+a2)(1 4o 4 Z—al—ag)
=3+ 2(cos a10 + cos asf + cos(a1+a2)0).

Since 1+ z% + 2179 ig a Newman polynomial of length 3, we have

A7 — 14~/7
142" —i—z”“*“"’] < u(3) = w/—27 V7



for some z = ¢ € S, by Theorem 2 in [2]. Therefore for some 6, we have

A7 — 147
34+ 2(cos a10 + cos asf + cos(ay +a2)9) < 2—7\/_
—34 — 147
2( cos a1 + cos asf + cos(a; +az)f) < 2—7\/_
—17 —TV7
cos a10 + cos asf + cos(ay+az)f < 2—7\/_
This completes Case 1.
Case 2. If a3 = 2a4, define
a = ay, b= as, c=as
and if as = 2a», define
a = as, b=a, c = as.
So we have
f(0) = cosal + cos bl + cos 2a6
where either
1<a<b<2a or 1<b<a<2a. (1)

So a > 2.

If a = 2, the only possibilities for f are

f(0) = cos 16 + cos 26 + cos 46,
f(0) = cos 20 + cos 30 + cos 40.

We dispose of those possibilities by observing

2 2 2 3
cos (1 . g) + cos <2 . g) + cos (4 : g) 5 < —1.315565,

cos (2 . g) t cos (3 . g) t cos (4 : g) — _9 < —1.315565.

So for the rest of Case 2, we assume a > 2.



We note from Lemma 1 that cosaf + cos2af attains its minimum value of
—9/8 when cosafl = —1/4. Define

1
5 — arccos ( — Z) ~ 1.823477

and further define

o
a

Then cosa; + cos2af; = —9/8 for each j. We claim that cosbf; < —1/2

for some j, implying that f(6;) < —13/8 = —1.625, which will take care of

Case 2.

fory=0,1,...,a—1.

We will use Lemma 6. We choose

y; = cos bo; for j=0,1,...,a—1.
We need to prove Zj y; = 0. We can take M = 1, and we will show that
L3 iV = 5. The claim will then follow.

Note that

a—1 70,—1 b
jzoyj—jzocos(g—l— )

This is 0 by Lemma 5, because b is not a multiple of a (since b < 2a and
b # a). Now consider

2mhy
a

a—1 a—1

| | e 2mbj
a2t =g et (G )

=0
1L (1 1 ¢ 2m2bj
Z—Z ——|——cos<——|— )
a “ 2 2 a a
7=0
a—1

11 WE 212
“rrmre (T o)

Jj=

which, by Lemma 5, is equal to % + 0 if we can show 2b is not a multiple of a.
From (1), note that we have

2a < 2b < 4a or 2b < 2a

10



so if 2b is a multiple of a, we have 2b = 3a or 2b = a. This implies a is even,
so say a = 2k. Since a > 2, we have k > 1. Note that either b = 3k or
b= k. Thus k > 1 divides all elements of {a,b,2a} = {a1, as, asz}, which is a
contradiction. Therefore, as stated, 2b is not a multiple of a. This completes
the verification of the claim and thus completes Case 2.

Case 3. Assume az ¢ {a; + ag,2a1,2as}. We define

9
0=+ forj=0,1,...,a5—1
as as
so cosazf; = —1 for each j. We claim that cosa,6; + cosasf; < —1/2 for

some j, implying that f(6;) < —3/2 = —1.5, which will take care of Case 3.
We will use Lemma 6. We choose
y; = cos a1t + cos asb; for j =0,1,...,a3 — 1.

We need to prove Zj y; = 0. We can take M = 2, and we will show that
a—13 >, 47 =1, 50 we can take K = 1/2. The claim will then follow.

Note that
Wl Wl T 2mayg o 2masg
>y = 3 (oo (7 ) con (4 2 )
=0 =0 a3 a3 a3 as

which is 0 by Lemma 5, since neither a; nor as is a multiple of a3. Now

11



consider

1 Wl T 27wayj aom  2mwasj 2
_a_gz cos (CL_3+ as >+COS (CL_3+ as )
=0

1 2 ' 2 '
+ — Z 2 cos <M + ﬂal]) cos (% + 7m2‘7>
as = as as as as

193 /1 1 Qa7 2m2aj
= — 5 + 5 cos ( + )
as “4 2 2 as as

-1 (COS ((az—al)w+2w(a2—a1)j> o <(a2+a1)7r+27r(a2+a1)j>)
as as as as

193 /1 1 Qa9 2m2asj
+ — = + < cos < + ) .
as “ 2 2 as as

By Lemma 5, this is equal to % + % = 1 if we can show that none of the
numbers 2ay, as—aq, as+ay, 2a, is a multiple of ag. This follows because

0 < 2a; < 2a3 and 2a, # ag,

O<ag—a; < as,

0 < as+a; < 2a3 and as+a; # as,

0 < 2ay < 2a3 and 2ay # ag.

12



This completes the verification of the claim and thus completes Case 3. [

The following is a consequence of Lemma 2 and Theorem 7.

1
Corollary 8. We have A\(3) = 7;—77\/? ~ 1.315565.

We remark in closing that it would be interesting if the evaluation of A(4) or
A(5) or A(6) can somehow be reduced to a finite search (even an impractically
large finite search). Very roughly speaking, cosine polynomials of large degree
have many local minima and do not appear to be good candidates for high
minima.

References

[1] D.W. Boyd, Large Newman polynomials, in Diophantine analysis (Kens-
ington, 1985), 159-170, London Math. Soc. Lecture Note Ser., 109, Cam-
bridge Univ. Press, Cambridge, 1986.

2] D.M. Campbell, H.R.P. Ferguson & R.W. Forcade, Newman polynomials
on |z| =1, Indiana Univ. Math. J. 32 (1983), 517-525.

[3] S. Chowla, Some applications of a method of A. Selberg, J. Reine Angew.
Math. 217 (1965), 128-132.

[4] P.J. Cohen, On a conjecture of Littlewood and idempotent measures,
Amer. J. Math. 82 (1960), 191-212.

[5] B. Goddard, Finite exponential series and Newman polynomials, Proc.
Amer. Math. Soc. 116 (1992), 313-320.

6] 1.Z. Ruzsa, Negative values of cosine sums, Acta Arith. 111 (2004), 179
186.

[7] M. Uchiyama (née Katayama) & S. Uchiyama, On the cosine problem,
Proc. Japan Acad. 36 (1960), 475-479.

13



