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We define Bn to be the set of n-tuples of the form (a0, . . . , an−1) where aj = ±1. If A ∈ Bn,

then we call A a binary sequence and define the autocorrelations of A by ck :=
∑n−k−1

j=0 ajaj+k

for 0 � k � n − 1. The problem of finding binary sequences with autocorrelations ‘near zero’

has arisen in communications engineering and is also relevant to conjectures of Littlewood

and Erdős on ‘flat’ polynomials with ±1 coefficients. Following Turyn, we define

b(n) := min
A∈Bn

max
1�k�n−1

|ck |.

The purpose of this article is to show that, using some known techniques from discrete

probability, we can improve upon the best upper bound on b(n) appearing in the previous

literature, and we can obtain both asymptotic and exact expressions for the expected value

of cmk if the aj are independent ±1 random variables with mean 0. We also include some

brief heuristic remarks in support of the unproved conjecture that b(n) = O(
√
n).

1. Introduction and main results

We let Bn denote the set of all 2n n-tuples of the form

A := (a0, a1, . . . , an−1), aj = ±1,

and we refer to such an n-tuple as a binary sequence of length n. We define the (acyclic)

autocorrelations of a binary sequence A by

ck :=

n−k−1∑
j=0

ajaj+k

for 0 � k � n − 1. Thus c0 = n, and more generally, ck is a sum of n − k terms each of

which is ±1, so ck ≡ n − k (mod 2) and hence

0 � |ck| � n − k if n − k is even, (1.1)

1 � |ck| � n − k if n − k is odd. (1.2)
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One can regard ck as measuring how strongly A resembles a version of itself that

has been acyclically shifted by k positions. The problem of finding binary sequences with

autocorrelations ‘near zero’ has arisen in applications such as communications engineering

[2, 8] and statistical mechanics [3], and has gained notoriety as a difficult problem in

combinatorial optimization. For instance, one can ask for which n do there exist A ∈ Bn

such that |ck| � 1 for all k �= 0. Such a sequence is called a (binary) Barker sequence; they

exist for n ∈ {2, 3, 4, 5, 7, 11, 13} and for no other n � 4·1012. (See [15] or [17].)

The autocorrelations of a binary sequence (a0, . . . , an−1) are relevant to the ‘flatness’ on

the unit circle of the polynomial

α(z) := a0 + a1z + · · · + an−1z
n−1.

This is because if |z| = 1 and α is as above, we have

|α(z)|2 = α(z)α(z)

= (a0 + a1z + · · · + an−1z
n−1)

(
a0 + a1

1

z
+ · · · + an−1

1

zn−1

)

= cn−1
1

zn−1
+ · · · + c1

1

z
+ c0 + c1z + · · · + cn−1z

n−1

= n + 2(c1�(z) + · · · + cn−1�(zn−1)).

So, for example, if the ck attain the lower bounds in (1.1) and (1.2), then

|α(z)|2 � n + 2

⌈
n − 1

2

⌉
� 2n

if |z| = 1, implying |α(z)| �
√

2n, which would be a better upper bound than the trivial

bound |α(z)| � n given by the triangle inequality. We say nothing more in this paper on

the subject of ‘flat’ polynomials with ±1 coefficients, other than referring the curious

reader to Problem 26 in [7], Problem 19 in [12], or Chapters 4 and 15 of [4].

For A ∈ Bn, we define the autocorrelation vector by

C := (c1, c2, . . . , cn−1),

so C is simply an (n−1)-tuple containing the ‘nontrivial’ autocorrelations. Then the

question of the ‘closeness to zero’ of the autocorrelations motivates the introduction of

the usual �p norms of C . Recall their definitions:

‖C‖p := (|c1|p + |c2|p + · · · + |cn−1|p)1/p,

where p ∈ R and p � 1. Recall that p � q implies ‖C‖p � ‖C‖q , and that

lim
p→∞

‖C‖p = ‖C‖∞ := max
1�k�n−1

|ck|.

Note that if p = 2m where m ∈ Z
+, then

‖C‖2m =
(
c2m
1 + c2m

2 + · · · + c2m
n−1

)1/2m
.

Following [16], we adopt the notation

b(n) := min
A∈Bn

‖C‖∞ = min
A∈Bn

max
1�k�n−1

|ck|,
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so b(n) = 1 if and only if there is a Barker sequence of length n. Some exact values of b(n)

have been found by exhaustive search; for example, computations in [5] and [6] reveal

that we have

b(n) � 2 for all n � 21,

b(n) � 3 for all n � 48, and

b(n) � 4 for all n � 69.

The exact growth rate of the function b(n) remains unknown. Moon and Moser [13]

proved in 1968 that for every ε > 0, there exists N ∈ Z
+ such that

b(n) � (2 + ε)
√
n log n

for all n � N. One purpose of this paper is to show (Theorem 1.3) that this can be

improved to

b(n) � (
√

2 + ε)
√

n log n.

In [16], Turyn conjectured in passing that perhaps b(n) grows like log n. However, any

result of the form b(n) = o(
√
n) would violate the ‘merit factor conjecture’ credited to

Golay, which says that for all n and for all A ∈ Bn, we have ‖C‖2
2 � Kn2, where K is a

positive constant independent of n. See [9] or Chapter 15 of [4]. It would be interesting

to know whether or not b(n) = O(
√
n); this question does not seem to be answered in the

available literature on autocorrelation of binary sequences.

Throughout the remainder of this paper, we suppose the aj are independent random

variables, each equally likely to be +1 or −1. This is equivalent to turning Bn into a

sample space whose 2n elements each have the same probability of occurring.

If n and k are fixed positive integers with k < n, we define Yk := cn−k , so Yk is the

autocorrelation which is a sum of k terms. (Here we are reverting to the common

convention of using capital letters to denote random variables.) We also define Xj :=

ajaj+n−k for 0 � j � k − 1, so we have

Yk = a0an−k + a1an−k+1 + · · · + ak−1an−1

= X0 + X1 + · · · + Xk−1.

The following is the crucial observation that allows us to prove the results of this paper.

Proposition 1.1. The Xj are mutually independent.

I have been told that Proposition 1.1 is folklore, but since I have not been able to find

it in the literature, I include a short proof below.

Proof of Proposition 1.1. We just need to show that if the values of some of the Xj are

specified, then any one of the remaining Xj is equally likely to be +1 or −1. So suppose

0 � i1 < i2 < · · · < im � k − 1 and j /∈ {i1, i2, . . . , im}, and suppose we are given that

Xi� = s� for 1 � � � m, (1.3)
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where each s� is either +1 or −1. We must show that among the binary sequences in Bn

that satisfy (1.3), half of them satisfy Xj = +1 and half satisfy Xj = −1.

Consider a graph G whose vertices are the aj and whose edges are precisely the pairs of

the form (aj , aj+n−k), so the edges correspond to the Xj . Note that the components of G

are paths. Let G′ be the graph obtained from G by deleting all edges except Xi1 , . . . , Xim .

Using the fact that the components of G′ are paths, it is straightforward to see that the

number of binary sequences in Bn satisfying (1.3) is equal to 2λ, where λ is the number of

components of G′. Observing that the endvertices of edge Xj lie in different components

of G′, we see that the conditional distribution of Xj is as claimed.

The mutual independence of the Xj has several immediate consequences. First, it is

obvious by symmetry that E(Y r
k ) = 0 if r is odd. We also see that for general r, E(Y r

k ) is

given by the non-closed-form expression

k∑
j=0

(
k
j

)
2k

(k − 2j)r. (1.4)

It is not immediately apparent that, for fixed even r, the sum (1.4) is a polynomial in k of

degree r/2. It does, however, follow immediately from Proposition 1.1 that Yk is a linearly

transformed binomial random variable. More specifically, we have

Yk = 2

(
U − k

2

)
= 2(U − E(U)),

where U is binomial with parameters k and 1/2. Thus, evaluating E(Y r
k ) reduces to

evaluating the central moments of a binomial random variable, but as there is no simple

closed-form expression for those central moments, this does not make the evaluation

of E(Y r
k ) trivial.

A 1923 recurrence due to Romanovsky [14], which also appears in Chapter 3 of [11],

shows that if U is binomial with parameters k and p, then the rth central moment of U,

considered as a polynomial in k, has degree at most �r/2�. Romanovsky’s recurrence,

however, involves differentiation with respect to p, and if we care only about the special

case p = 1/2, then a variant of Romanovsky’s technique yields a more efficient way to

generate the expected values of Y r
k . This is the content of Theorem 1.4 of this paper.

Another immediate consequence of the mutual independence of the Xj is that we can

apply Chernoff-type bounds for ‘tails’ of sums of independent ±1 random variables.

One such Chernoff-type bound is given by the following proposition, which appears, for

example, in Appendix A of [1].

Proposition 1.2. If Yk = X0 + X1 + · · · + Xk−1, where the Xj are independent random vari-

ables equally likely to be +1 or −1, then for any λ > 0, we have

P[|Yk| > λ] < 2 exp(−λ2/2k).

This yields an improvement of the result of Moon and Moser mentioned previously.
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Theorem 1.3. For all ε > 0, there exists N ∈ Z
+ such that if n > N, then there exists a

binary sequence in Bn that satisfies

|ck| � (
√

2 + ε)
√
n log n (1.5)

for all k ∈ {1, 2, . . . , n − 1}.

Proof. Suppose ε > 0, and define

λ := (
√

2 + ε)
√
n log n.

A crude overestimate for the probability that |ck| > λ for some k ∈ {1, . . . , n − 1} is given

by

n−1∑
k=1

P[|cn−k| > λ] =

n−1∑
k=1

P[|Yk| > λ]

which, by Proposition 1.2, is bounded above by

n−1∑
k=1

2 exp(−λ2/2k) <

n−1∑
k=1

2 exp(−λ2/2n)

< 2n exp(−λ2/2n)

= 2n exp(−(2 + ε′)(n log n)/2n)

= 2n exp(−(1 + ε′′) log n)

= 2/nε
′′

which, since it approaches 0, is certainly less than 1 − 1/2n for n large enough. Therefore

there exists N ∈ Z
+ such that for n > N, at least one binary sequence in Bn satisfies (1.5)

for all k ∈ {1, . . . , n − 1}.

The next result gives a particularly elegant recurrence that generates the expected values

of Y r
k (and hence also generates the central moments of a binomial random variable in

the special case p = 1/2).

Theorem 1.4. If the aj , ck , and C are as previously described, then, for k < n, E(c2m
n−k) is a

polynomial in k of degree m, and hence E(‖C‖2m
2m) is a polynomial in n of degree m + 1. If

we define

Pm(k) := E
(
c2m
n−k

)
,

then we can generate the polynomials Pm recursively via

Pm+1(k) = k2Pm(k) − k(k − 1)Pm(k − 2). (1.6)

Proof. If X is any random variable, we define the usual (ordinary) moment-generating

function, or MGF ,

MX(t) := E(etX),
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where t is a formal variable. We have

dr

dtr
MX(t)

∣∣∣∣
t=0

= E(Xr) (r ∈ Z
+),

or equivalently,

MX(t) = 1 + E(X)
t

1!
+ E(X2)

t2

2!
+ · · · .

Recall that if Y is a sum of k independent identically distributed random variables, each

with MGF MX(t), then the MGF of Y is

MY (t) = (MX(t))k.

Thus, the MGF of the previously defined Yk = cn−k is

M(t) :=

(
e+t + e−t

2

)k

= coshk t = 1 + E(Y 2
k )

t2

2!
+ E

(
Y 4
k

) t4
4!

+ · · ·

(note that the MGF of Yk contains only even powers of t since E(Y r
k ) = 0 when r is odd).

We now observe that

d2

dt2
M(t) =

d

dt
(k coshk−1 t sinh t)

= k(k − 1) coshk−2 t sinh2 t + k coshk t

= k(k − 1) coshk−2 t(cosh2 t − 1) + k coshk t

= k2 coshk t − k(k − 1) coshk−2 t, (1.7)

but also

d2

dt2
M(t) =

d2

dt2

(
1 + E

(
Y 2
k

) t2
2!

+ E
(
Y 4
k

) t4
4!

+ · · ·
)

= E
(
Y 2
k

)
+ E

(
Y 4
k

) t2
2!

+ E
(
Y 6
k

) t4
4!

+ · · · . (1.8)

If we now equate the coefficient of t2m/(2m)! in (1.8) and the coefficient of t2m/(2m)!

in (1.7), we get

E
(
Y 2m+2
k

)
= k2

E
(
Y 2m
k

)
− k(k − 1)E

(
Y 2m
k−2

)
,

or equivalently,

Pm+1(k) = k2Pm(k) − k(k − 1)Pm(k − 2),

establishing (1.6), as required.

2. Further comments

For illustration, we give the first few polynomials Pm(k) generated by the recurrence (1.6):

P1(k) = k = E
(
Y 2
k

)
,

P2(k) = 3k2 − 2k = E
(
Y 4
k

)
,

P3(k) = 15k3 − 30k2 + 16k = E
(
Y 6
k

)
,

P4(k) = 105k4 − 420k3 + 588k2 − 272k = E
(
Y 8
k

)
.
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In general, Pm(k) has the form

Pm(k) = (2m − 1)!! km + O(km−1), (2.1)

where the notation (2m − 1)!! means (2m − 1)(2m − 3) · · · 3 · 1. This does not seem to

follow immediately from (1.6), but can be proved by a counting argument, which we

consider too much of a digression to include here.

If we care only about the asymptotic behaviour of E(Y 2m
k ), then it is worth noting that

we can prove

E(Y 2m
k ) � (2m − 1)!! km (2.2)

by using the following version of the Khinchin inequalities, due to Haagerup [10].

Proposition 2.1. Let X0, . . . , Xk−1 be independent random variables, each equally likely to

be +1 or −1, and let r0, . . . , rk−1 be real constants. For positive real p, we have

Ap

⎛
⎝ k−1∑

j=0

r2j

⎞
⎠1/2 �

⎡
⎣E

⎛
⎝∣∣∣∣

k−1∑
j=0

rjXj

∣∣∣∣
p

⎞
⎠

⎤
⎦1/p � Bp

⎛
⎝ k−1∑

j=0

r2j

⎞
⎠1/2, (2.3)

where Ap and Bp are constants depending only on p. If p > 2, we can take Ap = 1 and

Bp = 21/2

(
Γ( p+1

2
)

√
π

)1/p

.

If p = 2m where m ∈ Z
+, and rj = 1 for all j, then the rightmost inequality in (2.3) gives

E
(
Y 2m
k

)
= E

⎛
⎝∣∣∣∣

k−1∑
j=0

Xj

∣∣∣∣
2m

⎞
⎠� B2m

2m

⎛
⎝k−1∑

j=0

1

⎞
⎠m = B2m

2mk
m,

and we then observe that

B2m
2m = 2m

Γ(2m+1
2

)
√
π

= 2m
(2m−1)!!

2m

√
π

√
π

= (2m − 1)!!,

which establishes that (2.2) holds as claimed.

We now observe that (2.1), together with the elementary fact that a random variable

cannot always exceed its expected value, yields upper bounds on b(n) that, roughly

speaking, are ‘slightly greater’ than
√
n, as is true of the bound given by Theorem 1.3.

If the ck and C are as defined previously, observe that

E
(
‖C‖2m

2m

)
= E

(
n−1∑
k=1

c2m
n−k

)
=

n−1∑
k=1

E
(
Y 2m
k

)
=

n−1∑
k=1

Pm(k)

=

n−1∑
k=1

((2m − 1)!! km + O(km−1))

= (2m − 1)!!
nm+1

m + 1
+ O(nm).
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It follows that there is at least one binary sequence in Bn that satisfies

‖C‖2m
2m � (2m − 1)!!

m + 1
nm+1 + O(nm)

and hence also satisfies

‖C‖∞ � ‖C‖2m �
(

(2m − 1)!!

m + 1

)1/2m

n(m+1)/2m + o
(
n(m+1)/2m

)
. (2.4)

For example, we have

E
(
‖C‖10

10

)
=

n−1∑
k=1

P5(k) =

n−1∑
k=1

(945k5 − 6300k4 + 16380k3 − 18960k2 + 7936k)

=
315

2
n6 − 3465

2
n5 +

30555

4
n4 − 16610n3 +

69857

4
n2 − 6918n

which, a computation reveals, is less than (315/2)n6 for n � 1. It follows that for n � 1

there is always at least one binary sequence in Bn satisfying

‖C‖∞ � ‖C‖10 �
(

315

2
n6

)1/10

≈ 1.658n6/10.

We thus get an upper bound on b(n) that is worse than Theorem 1.3 in a big O sense, but

better than Theorem 1.3 in the sense that it holds for all n.

Notice that in the proof of Theorem 1.3 we were able to show that, eventually, ‘most’

binary sequences in Bn satisfy

‖C‖∞ � (
√

2 + ε)
√

n log n,

by using the trivial fact that the probability of a union of events is bounded above by the

sum of the probabilities of the events. Notice also that (2.4) says, roughly speaking, that

any binary sequence in Bn that is merely ‘better than average’ will satisfy

‖C‖∞ � Kmn
(m+1)/2m + o

(
n(m+1)/2m

)
(where the constant Km of course depends on m). For these reasons, it is the author’s

opinion that in the near future, more sophisticated techniques will establish the (as yet

unproved) statement that we have b(n) = O(
√
n).
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