
The minimum value and the L1 norm of the Dirichlet kernel

For each positive integer n, define the function

Dn(θ) = 1 + 2
(

cos θ + cos 2θ + · · ·+ cosnθ
)

= e−inθ + · · ·+ e−i2θ + e−iθ + e0 + eiθ + ei2θ + · · ·+ einθ

which we call the (nth) Dirichlet kernel. The Dirichlet kernel is a much-
studied function in analysis (for example, it arises when considering partial
sums of Fourier series). Note that Dn(θ) is an even function with period 2π.

If f(θ) is any 2π-periodic function, we define the usual Lp norms

‖f(θ)‖p =
( 1

2π

∫ 2π

0

|f(θ)|p dθ
)1/p

and if f(θ) is also an even function, we have

‖f(θ)‖p =
( 1

π

∫ π

0

|f(θ)|p dθ
)1/p

.

This note is concerned with the minimum value and the L1 norm of the
function Dn(θ). We prove the following:

min
θ
Dn(θ) ∼ C0 · n ≈ −0.434467n

where C0 is the absolute minimum of 2 sin t
t

, and

‖Dn(θ)‖1 ∼
4

π2
log n ≈ 0.405285 log n

where “log” means natural log, and f(n) ∼ g(n) means f(n)
g(n)
→ 1.

These results are not new (indeed, they probably count as “mathematical
folklore”) but detailed self-contained proofs are sometimes hard to find in
the literature, and such proofs can be interesting and instructive analysis
exercises.
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We start by noting that D = Dn(θ) can be written another way using the
following manipulations.

D = e−inθ + · · ·+ e−i1θ + ei0θ + ei1θ + · · ·+ einθ

eiθ/2D = e−i(n−
1
2
)θ + · · ·+ e−iθ/2 + eiθ/2 + ei3θ/2 + · · ·+ ei(n+

1
2
)θ

e−iθ/2D = e−i(n+
1
2
)θ + · · ·+ e−i3θ/2 + e−iθ/2 + eiθ/2 + · · ·+ ei(n−

1
2
)θ

(eiθ/2 − e−iθ/2)D = ei(n+
1
2
)θ − e−i(n+

1
2
)θ

D =
ei(n+

1
2
)θ − e−i(n+ 1

2
)θ

eiθ/2 − e−iθ/2
=

2i sin(n+ 1
2
)θ

2i sin θ
2

=
sin(2n+1

2
)θ

sin θ
2

.

If θ ∈ [0, π], the denominator sin θ
2

is nonnegative, and the numerator sin(2n+1
2

)θ
has sign changes when θ is an integer multiple of 2π

2n+1
. We therefore partition

the interval [0, π] into n+ 1 subintervals[
0,

2π

2n+1

]
∪
[ 2π

2n+1
,

4π

2n+1

]
∪ · · · ∪

[2(n−1)π

2n+1
,

2nπ

2n+1

]
∪
[ 2nπ

2n+1
, π
]

where the first n subintervals each have width 2π
2n+1

, and the last subinterval
has width π

2n+1
. For illustrative purposes, the graphs of D4(θ) and D5(θ) are

given below. In general, we have Dn(0) = 2n+ 1 and |Dn(θ)| ≤ 2n+ 1.
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If we just want to show there exists some negative constant C such that
Dn(θ) always dips below Cn for some θ, we can accomplish this by simply
considering Dn( 3π

2n+1
).

2



If θ0 = 3π
2n+1

, we note the following.

sin
θ0
2
<
θ0
2

1

sin θ0
2

>
2

θ0

Dn(θ0) =
sin(2n+1

2
)θ0

sin θ0
2

=
−1

sin θ0
2

<
−2

θ0
=
−2

3π
(2n+ 1) ∼ − 4

3π
n.

This might cause someone to conjecture that minDn(θ) is asympotically
equal to − 4

3π
n ≈ −0.424413n, but as mentioned before, the true minimum is

closer to −0.434467n. The first step toward proving this is to compare Dn(θ)
to a Riemann sum and an integral.

We observe that we have

Dn(θ) = 1 + 2n
n∑
k=1

cos
(
nθ
k

n

)
· 1

n

= 1 + 2n
n∑
k=1

f
(k
n

)
· 1

n

where f(x) = cos(nθx). Then, the sum
∑n

k=1 f( k
n
) 1
n

is a right-endpoint

Riemann sum for the integral
∫ 1

0
f(x)dx. We therefore have

Dn(θ) ≈ 1 + 2n

∫ 1

0

f(x) dx

= 1 + 2n

∫ 1

0

cos(nθx) dx

= 1 + 2n · sin(nθ)

nθ
= 1 + 2n · sin t

t

which, for a fixed n, is minimized when t minimizes sin t
t

. That value of t is
approximately 4.49341, suggesting we should choose θ ≈ 4.49341/n (which
is a little less than 3π

2n+1
≈ 4.71239/n). To make all this more precise, we

have to be more careful about comparing the Riemann sum to the integral.
(The fact that the function f(x) depends on n makes things nontrivial.)
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The integral can be broken into smaller integrals∫ 1

0

f(x) dx =
n∑
k=1

∫ k/n

(k−1)/n
f(x) dx

and each of these smaller integrals can be written as∫ k/n

(k−1)/n
f(x) dx = f(x∗k) ·

1

n
where x∗k ∈ [k−1

n
, k
n
].

We therefore have
∣∣ k
n
− x∗k

∣∣ ≤ 1
n
. We also have

f( k
n
)− f(x∗k)
k
n
− x∗k

= f ′(ξ) for some ξ between x∗k and k
n
.

This implies ∣∣∣∣∣f( k
n
)− f(x∗k)
k
n
− x∗k

∣∣∣∣∣ = |f ′(ξ)| = |−nθ sin(nθξ)| ≤ nθ

∣∣∣∣f(kn)− f(x∗k)

∣∣∣∣ ≤ nθ

∣∣∣∣kn − x∗k
∣∣∣∣ ≤ nθ · 1

n
= θ∣∣∣∣f(kn) · 1

n
− f(x∗k) ·

1

n

∣∣∣∣ ≤ θ

n
.

That is, f( k
n
) 1
n

is within θ
n

of f(x∗k)
1
n

=
∫ k/n
(k−1)/n f(x)dx. If we then sum from

k = 1 to n, we get∫ 1

0

f(x) dx− θ ≤
n∑
k=1

f
(k
n

)
· 1

n
≤
∫ 1

0

f(x) dx+ θ

sin(nθ)

nθ
− θ ≤

n∑
k=1

f
(k
n

)
· 1

n
≤ sin(nθ)

nθ
+ θ

1

n
+

2 sin(nθ)

nθ
− 2θ ≤ Dn(θ)

n
≤ 1

n
+

2 sin(nθ)

nθ
+ 2θ.

To prove our claim about minθDn(θ), we have to prove that

minθDn(θ)

n
→ C0 ≈ −0.434467.
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We will prove this by proving the following.

Proposition: Given ε > 0, there exists N such that if n > N , then
(Claim 1) Dn(θ)/n ≥ C0 − ε for all θ,
(Claim 2) Dn(θ)/n ≤ C0 + ε for some θ.

To prove Claim 1, we use different arguments for different values of θ. Claim 1
is trivially true if θ belongs to either of the intervals [0, 2π

2n+1
] or [ 4π

2n+1
, 6π
2n+1

],

because sin(2n+1
2

)θ is nonnegative there and hence so is Dn(θ). Next, we
consider θ ∈ [ 6π

2n+1
, π]. Using the fact that sin t ≥ 2

π
t on the interval [0, π

2
],

we have

sin
θ

2
≥ θ

π

1

sin θ
2

≤ π

θ
<

2n+ 1

6

|Dn(θ)| =
∣∣sin(2n+1

2
)θ
∣∣

sin θ
2

≤ 1

sin θ
2

<
2n+ 1

6∣∣∣∣Dn(θ)

n

∣∣∣∣ < 1

3
+

1

6n
.

Therefore if n ≥ 2 we have ∣∣∣∣Dn(θ)

n

∣∣∣∣ < 1

3
+

1

12
=

5

12
≈ 0.416667

C0 − ε < C0 < −
5

12
<
Dn(θ)

n
<

5

12
.

We now must show that Claim 1 is true for all θ in the interval [ 2π
2n+1

, 4π
2n+1

],
and we must show that Dn(θ)/n ≤ C0 + ε for some θ. This will finish the
proof of the above proposition.

From before, we have

1

n
+

2 sin(nθ)

nθ
− 2θ ≤ Dn(θ)

n
≤ 1

n
+

2 sin(nθ)

nθ
+ 2θ.

If θ ≤ 4π
2n+1

, then this implies

Dn(θ)

n
≥ 1

n
+

2 sin(nθ)

nθ
− 2θ ≥ 1

n
+ C0 −

8π

2n+ 1
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which will be above C0 − ε if n is large enough.

Next, let t0 be the t that minimizes sin t
t

(so t0 ≈ 4.49341), and choose θ =
t0/n. We then have

Dn(θ)

n
≤ 1

n
+

2 sin t0
t0

+
2t0
n

=
1

n
+ C0 +

2t0
n

which will be below C0 + ε if n is large enough.

This completes our proof that minθDn(θ) ∼ C0 · n ≈ −0.434467n. Next, we
proceed with our analysis of

‖Dn(θ)‖1 =
1

π

∫ π

0

|Dn(θ)| dθ.

Following our earlier remarks about sign changes of Dn(θ) and sin(2n+1
2

)θ,
we write

π ‖Dn(θ)‖1 =
n∑
k=1

∫ 2kπ/(2n+1)

2(k−1)π/(2n+1)

|Dn(θ)| dθ +

∫ π

2nπ/(2n+1)

|Dn(θ)| dθ.

We now assemble some various lemmas that will be useful.

Lemma 1. If a > 0 is real and k is an integer, we have∫ kπ/a

(k−1)π/a
|sin(aθ)| dθ =

2

a
.

This lemma is straightforward, and the proof is omitted. We will use this
lemma with a = 2n+1

2
, in which case it says∫ 2kπ/(2n+1)

2(k−1)π/(2n+1)

∣∣∣∣sin(2n+ 1

2

)
θ

∣∣∣∣ dθ =
4

2n+ 1
.

Lemma 2. If 0 < t < π
2
, we have

1

t
≤ 1

sin t
≤ 1

t
+ C1 · t

where C1 = 4
24−π2 ≈ 0.283078.
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Proof of Lemma 2: For positive t, we have

t− t3

3!
≤ sin t ≤ t

which implies

1

t
≤ 1

sin t
≤ 1

t− t3

6

=
6

6t− t3

=
6− t2

6t− t3
+

t2

6t− t3

=
1

t
+

t

6− t2

which means that if t ≤ π
2

then we further have

1

sin t
≤ 1

t
+

t

6− t2
≤ 1

t
+

t

6− (π
2
)2

=
1

t
+

4t

24− π2
.

Lemma 3. If we define

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

then Hn−log n can be bounded between two constants (in fact, it approaches
a constant). For example, we have

1− log 2 ≤ Hn − log n ≤ 1 for all n.

The proof of Lemma 3 is reasonably straightforward and is hence omitted.
Essentially, we regard Hn as a Riemann sum and compare to an integral.

With these lemmas stated, we are in a position to estimate ‖Dn(θ)‖1. Recall
that we expressed π ‖Dn(θ)‖1 as a sum of n+ 1 integrals

π ‖Dn(θ)‖1 =
n∑
k=1

∫ 2kπ/(2n+1)

2(k−1)π/(2n+1)

|Dn(θ)| dθ +

∫ π

2nπ/(2n+1)

|Dn(θ)| dθ.

For two of those n+ 1 integrals, we just use trivial bounds. We know

0 ≤ |Dn(θ)| ≤ 2n+ 1.
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This implies that we have

0 ≤
∫ 2π/(2n+1)

0

|Dn(θ)| dθ ≤ (2n+ 1) · 2π

2n+ 1
= 2π,

0 ≤
∫ π

2nπ/(2n+1)

|Dn(θ)| dθ ≤ (2n+ 1) · π

2n+ 1
= π.

Next, we want upper and lower bounds for the n− 1 integrals of the form∫ 2kπ/(2n+1)

2(k−1)π/(2n+1)

|Dn(θ)| dθ

where 2 ≤ k ≤ n. Note that we have

|Dn(θ)| =

∣∣∣∣∣sin(2n+1
2

)θ

sin θ
2

∣∣∣∣∣ =

∣∣sin(2n+1
2

)θ
∣∣

sin θ
2

.

Then, for θ in the above interval, we have

(k − 1)π

2n+ 1
≤ θ

2
≤ kπ

2n+ 1

sin
(k − 1)π

2n+ 1
≤ sin

θ

2
≤ sin

kπ

2n+ 1

1

sin kπ
2n+1

≤ 1

sin θ
2

≤ 1

sin (k−1)π
2n+1

and then applying Lemma 2 gives us

2n+ 1

kπ
≤ 1

sin θ
2

≤ 2n+ 1

(k − 1)π
+ C1 ·

(k − 1)π

2n+ 1
.

Multiplying by
∣∣sin(2n+1

2
)θ
∣∣ then gives us

2n+ 1

kπ

∣∣∣∣sin(2n+ 1

2

)
θ

∣∣∣∣ ≤ |Dn(θ)| ≤
(

2n+ 1

(k − 1)π
+C1·

(k − 1)π

2n+ 1

) ∣∣∣∣sin(2n+ 1

2

)
θ

∣∣∣∣ .
We then integrate from θ = 2(k−1)π

2n+1
to 2kπ

2n+1
and use Lemma 1 with a = 2n+1

2
.

This gives us

2n+ 1

kπ
· 4

2n+ 1
≤
∫ 2kπ/(2n+1)

2(k−1)π/(2n+1)

|Dn(θ)| dθ ≤
(

2n+ 1

(k − 1)π
+C1·

(k − 1)π

2n+ 1

)
· 4

2n+ 1
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which simplifies to

4

kπ
≤
∫ 2kπ/(2n+1)

2(k−1)π/(2n+1)

|Dn(θ)| dθ ≤ 4

(k − 1)π
+ C1 ·

4(k − 1)π

(2n+ 1)2
.

We will get upper and lower bounds for π ‖Dn(θ)‖1 if we sum the above from
k = 2 to n (and use the previously mentioned trivial bounds on the other
integrals). This gives us

π ‖Dn(θ)‖1 ≥
n∑
k=2

4

kπ
,

π ‖Dn(θ)‖1 ≤ 3π +
n∑
k=2

(
4

(k − 1)π
+ C1 ·

4(k − 1)π

(2n+ 1)2

)
.

Next, with the help of Lemma 3, we have

n∑
k=2

4

kπ
=

4

π
(Hn − 1) ≥ 4

π
(log n− log 2),

n∑
k=2

4

(k − 1)π
=

4

π
(Hn−1) ≤

4

π
(log(n− 1) + 1) <

4

π
(log n+ 1).

Note that we also have

n∑
k=2

C1
4(k − 1)π

(2n+ 1)2
=

4C1π

(2n+ 1)2

n∑
k=2

(k − 1)

=
C1π

(n+ 1
2
)2
· n(n− 1)

2
<
C1π

2
.

This means that we have upper and lower bounds for π ‖Dn(θ)‖1 that are
both of the form 4

π
log n± C. This completes our proof that

‖Dn(θ)‖1 ∼
4

π2
log n

and in fact, our argument proves the slightly stronger result that

‖Dn(θ)‖1 =
4

π2
log n+O(1).
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