The minimum value and the L! norm of the Dirichlet kernel

For each positive integer n, define the function

Dy(0) =14 2(cosf + cos26 + - - + cosnb)
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which we call the (nth) Dirichlet kernel. The Dirichlet kernel is a much-
studied function in analysis (for example, it arises when considering partial
sums of Fourier series). Note that D, () is an even function with period 27.

If f(#) is any 2m-periodic function, we define the usual L” norms
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and if f(0) is also an even function, we have
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This note is concerned with the minimum value and the L! norm of the
function D,,(6). We prove the following:

min D,,(0) ~ Cy - n ~ ~0.434467n

where Cy is the absolute minimum of 222 and

4
[ Dn(0)]]; ~ — logn ~ 0.405285 log n
T
where “log” means natural log, and f(n) ~ g(n) means (( )) — 1.

These results are not new (indeed, they probably count as “mathematical
folklore”) but detailed self-contained proofs are sometimes hard to find in
the literature, and such proofs can be interesting and instructive analysis
exercises.



considering D,,(

We start by noting that D = D,,(f) can be written another way using the
following manipulations
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If we just want to show there exists some negative constant C' such that

D,,(0) always dips below Cn for some 6, we can accomplish this by simply
2n+1)



If §y = 52— we note the following.
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This might cause someone to conjecture that min D,(#) is asympotically
equal to —?:iwn ~ —0.424413n, but as mentioned before, the true minimum is
closer to —0.434467n. The first step toward proving this is to compare D, ()

to a Riemann sum and an integral.

We observe that we have
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where f(z) = cos(nfxz). Then, the sum Y, , f(£)L is a right-endpoint

Riemann sum for the integral fol f(z)dz. We therefore have
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which, for a fixed n, is minimized when ¢ minimizes %nt That value of t is
approximately 4.49341, suggesting we should choose 6 ~ 4.49341/n (which
is a little less than 2211 ~ 4.71239/n). To make all this more precise, we
have to be more careful about comparing the Riemann sum to the integral.

(The fact that the function f(z) depends on n makes things nontrivial.)




The integral can be broken into smaller integrals

[ea=3 [ gma

and each of these smaller integrals can be written as
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That is, f(£)1 is within £ of f(z})2 f(l;/ nl i x)dx. If we then sum from
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To prove our claim about ming D,,(#), we have to prove that
ming D,,(0)

— Cy = —0.434467.
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We will prove this by proving the following.

Proposition: Given € > 0, there exists N such that if n > N, then
(Claim 1) D,(0)/n > Cy — € for all 6,
(Claim 2) D,(0)/n < Cy + ¢ for some 6.

To prove Claim 1, we use different arguments for different values of #. Claim 1
is trivially true if € belongs to either of the intervals [0, 2311] or [2;111, 2211],
because sin(#2)60 is nonnegative there and hence so is D,(6). Next, we
consider § € [322=, nr|. Using the fact that sint > 2¢ on the interval [0, 3],
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We now must show that Claim 1 is true for all § in the interval [57, 5%
and we must show that D, (0)/n < Cy + € for some . This will finish the
proof of the above proposition.

From before, we have
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which will be above Cjy — ¢ if n is large enough.

Next, let ¢y be the ¢ that minimizes Sl—?t (so ty &~ 4.49341), and choose 6 =
to/n. We then have
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which will be below Cj + ¢ if n is large enough.

This completes our proof that ming D,,(0) ~ Cy - n &~ —0.434467n. Next, we
proceed with our analysis of

ID.(0)], = /|D )| db.

Following our earlier remarks about sign changes of D,,(f) and sin(2%)6,
we write
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We now assemble some various lemmas that will be useful.

Lemma 1. If @ > 0 is real and k is an integer, we have
km/a 9
/ |sin(af)| df = —
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This lemma is straightforward, and the proof is omitted. We will use this

lemma with a = 2”; L in which case it says
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Lemma 2. If 0 < ¢ < 7, we have
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where C] = ~ 0.283078.



Proof of Lemma 2: For positive ¢, we have
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which implies
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which means that if ¢ < 7 then we further have
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Lemma 3. If we define
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then H, —logn can be bounded between two constants (in fact, it approaches
a constant). For example, we have

1—log2< H,—logn<1 for all n.

The proof of Lemma 3 is reasonably straightforward and is hence omitted.
Essentially, we regard H,, as a Riemann sum and compare to an integral.

With these lemmas stated, we are in a position to estimate ||D,(6)]||;. Recall
that we expressed || D, ()|, as a sum of n + 1 integrals

2k /(2n+1) ™
T 1D (0)], = Z / D,(0)]d6 + / 1D,(0)] do.
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For two of those n + 1 integrals, we just use trivial bounds. We know

0 < [Da(60)] < 20 + 1.
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This implies that we have
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Next, we want upper and lower bounds for the n — 1 integrals of the form
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where 2 < k < n. Note that we have
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and then applying Lemma 2 gives us
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Multiplying by |sin(24)6]| then gives us
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This gives us
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which simplifies to
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We will get upper and lower bounds for 7 || D,,(6)]|, if we sum the above from
= 2 to n (and use the previously mentioned trivial bounds on the other
integrals). This gives us
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Next, with the help of Lemma 3, we have
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Note that we also have
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This means that we have upper and lower bounds for 7| D, ()|, that are
both of the form %logn + C. This completes our proof that

4
1D,(O)]; ~ 5 logn
and in fact, our argument proves the slightly stronger result that

4
ID,(0)]l; = 5 logn + O(1).



