
A note on epsilon-delta proofs

“Epsilon-delta” proofs can be confusing to calculus students when they

first encounter them. To construct such a proof, one of course has to show

that for every positive ε, there exists a δ that “works” for that epsilon.

Perhaps part of what bothers some beginning students is that the trial-

and-error process of finding a sufficient δ is distinct from the logical process

of proving that the choice of δ works. Often, we do “scratch work” that

we don’t include in the proof, and so the finished proof can be completely

mathematically valid but contain a seemingly “unmotivated” statement along

the lines of “let δ = min{1
2
, ε

7
}.”

To some extent, though, one can combine the two tasks of finding a δ and

proving that the δ works, and I have a preference for epsilon-delta proofs that

are written with this philosophy in mind. As a professional mathematician,

I prefer a proof (as long as it is valid) to contain relatively few statements

that appear unmotivated. Furthermore, it is my hope that this approach to

epsilon-delta proofs may be helpful to students who are new to the topic.

I will illustrate what I mean by including two complete self-contained

rigorous proofs of the following statement. The first is structured in a way

that in my experience, I would consider “typical” for an epsilon-delta proof

in a course or textbook introducing the topic, whereas the second proof is

structured in the way that I prefer.

Problem. Give an epsilon-delta proof of the statement

lim
x→3

x2 − 5

x− 2
= 4.

Proof 1. Let ε > 0. We must find δ such that

0 < |x− 3| < δ =⇒
∣∣∣∣∣x2 − 5

x− 2
− 4

∣∣∣∣∣ < ε.

Choose δ = min{1
2
, ε

5
}. If 0 < |x− 3| < δ, we then have |x− 3| < ε

5
, and also

−1
2
< x − 3 < 1

2
which implies 1

2
< x − 2 < 3

2
and 3

2
< x − 1 < 5

2
, which in

1



turn implies
∣∣∣ 1
x−2

∣∣∣ < 2 and |x− 1| < 5
2
. We then have

|x− 3| ·
∣∣∣∣ 1

x− 2

∣∣∣∣ · |x− 1| <
ε

5
· 2 · 5

2

=⇒
∣∣∣∣∣(x− 3)(x− 1)

x− 2

∣∣∣∣∣ < ε

=⇒
∣∣∣∣∣x2 − 4x+ 3

x− 2

∣∣∣∣∣ < ε

=⇒
∣∣∣∣∣x2 − 5− 4(x− 2)

x− 2

∣∣∣∣∣ < ε

=⇒
∣∣∣∣∣x2 − 5

x− 2
− 4

∣∣∣∣∣ < ε

as required.

Proof 2. Let ε > 0. We must find δ such that

0 < |x− 3| < δ =⇒
∣∣∣∣∣x2 − 5

x− 2
− 4

∣∣∣∣∣ < ε.

We first observe the chain of equalities∣∣∣∣∣x2 − 5

x− 2
− 4

∣∣∣∣∣ =

∣∣∣∣∣x2 − 5− 4(x− 2)

x− 2

∣∣∣∣∣ (1)

=

∣∣∣∣∣x2 − 4x+ 3

x− 2

∣∣∣∣∣ (2)

=

∣∣∣∣∣(x− 3)(x− 1)

x− 2

∣∣∣∣∣ (3)

=
∣∣∣∣x− 1

x− 2

∣∣∣∣ · |x− 3| . (4)

We then observe that if |x− 3| < 1
2
, i.e., if −1

2
< x− 3 < 1

2
, then we have

1

2
< x− 2 <

3

2
and

3

2
< x− 1 <

5

2
(5)

=⇒
∣∣∣∣ 1

x− 2

∣∣∣∣ < 2 and |x− 1| < 5

2
(6)

=⇒
∣∣∣∣x− 1

x− 2

∣∣∣∣ < 5. (7)
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We now choose δ = min{1
2
, ε

5
}. Then if 0 < |x− 3| < δ, we have |x− 3| < 1

2
,

implying
∣∣∣x−1
x−2

∣∣∣ < 5 by (7), as well as |x− 3| < ε
5
. Taking the product gives

∣∣∣∣x− 1

x− 2

∣∣∣∣ · |x− 3| < 5 · ε
5

= ε

which by (1)–(4) is equivalent to∣∣∣∣∣x2 − 5

x− 2
− 4

∣∣∣∣∣ < ε

as required.

Of course, taste is subjective, and some may consider the first proof to

be more elegant, since it begins with the (perhaps unmotivated) choice of δ,

and basically consists of nothing but a unidirectional chain of implications,

beginning with the choice of delta, and ending with the required inequality

involving epsilon. Nevertheless, I find the second proof to be more “honest.”

In any case, note that the two proofs are essentially the same length, and

both are completely rigorous!
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