A note on epsilon-delta proofs

“Epsilon-delta” proofs can be confusing to calculus students when they
first encounter them. To construct such a proof, one of course has to show
that for every positive e, there exists a 0 that “works” for that epsilon.
Perhaps part of what bothers some beginning students is that the trial-
and-error process of finding a sufficient ¢ is distinct from the logical process
of proving that the choice of § works. Often, we do “scratch work” that
we don’t include in the proof, and so the finished proof can be completely
mathematically valid but contain a seemingly “unmotivated” statement along
the lines of “let § = min{3, £}.”

To some extent, though, one can combine the two tasks of finding a ¢ and
proving that the § works, and I have a preference for epsilon-delta proofs that
are written with this philosophy in mind. As a professional mathematician,
[ prefer a proof (as long as it is valid) to contain relatively few statements
that appear unmotivated. Furthermore, it is my hope that this approach to
epsilon-delta proofs may be helpful to students who are new to the topic.

I will illustrate what I mean by including two complete self-contained
rigorous proofs of the following statement. The first is structured in a way
that in my experience, I would consider “typical” for an epsilon-delta proof
in a course or textbook introducing the topic, whereas the second proof is
structured in the way that I prefer.

Problem. Give an epsilon-delta proof of the statement

Proof 1. Let ¢ > 0. We must find ¢ such that
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Choose § = min{3, £}. If 0 < |z — 3| < 4, we then have |z — 3| < £, and also
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turn implies ’ﬁ’ <2 and |z — 1] < 2. We then have
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as required.
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Proof 2. Let ¢ > 0. We must find ¢ such that

0<|z—-3]<éd= ’

We first observe the chain of equalities
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We then observe that if |z — 3| < %, ie., if —% <xr—3< %, then we have
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5,2} Thenif 0 < |z — 3| < 8, we have |z — 3| < £,

i—:é‘ <5 by (7), as well as |z — 3| < . Taking the product gives

We now choose § = min{

implying
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which by (1)—(4) is equivalent to
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as required.

Of course, taste is subjective, and some may consider the first proof to
be more elegant, since it begins with the (perhaps unmotivated) choice of ¢,
and basically consists of nothing but a unidirectional chain of implications,
beginning with the choice of delta, and ending with the required inequality
involving epsilon. Nevertheless, I find the second proof to be more “honest.”
In any case, note that the two proofs are essentially the same length, and

both are completely rigorous!



