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1 Abstract

Chu sequences are a family of polyphase sequences that have perfect periodic
autocorrelations and good aperiodic autocorrelations. It has previously been
proved that the maximum offpeak (aperiodic) autocorrelation (in absolute
value) of the Chu sequence of length n is asymptotically equal to 0.480261

√
n.

It has also been empirically observed that the merit factor of Chu sequences
appears to grow like a constant times

√
n. In this note, we provide an analytic

proof that the merit factor of the Chu sequence of length n is bounded below
by a constant multiple of

√
n for all n. To the author’s knowledge, this is

the first time a family of polyphase sequences of all lengths has been proved
to have merit factor growing at least like order

√
n.

2 Preliminaries

A complex sequence of length n is a finite sequence

S = (s0, s1, . . . , sn−1),

where for each j, we have sj ∈ C and |sj| = 1. The sequence is called a
polyphase sequence if there exists a positive integer M such that each sj
is an Mth root of 1.

For k = 0, 1, . . . , n− 1, we define the aperiodic autocorrelations of S,

ck =
n−k−1∑
j=0

sjsj+k,
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and the periodic autocorrelations of S,

γk =
n−1∑
j=0

sjsj+k,

where the bar denotes complex conjugation. In the definition of γk, the
addition in the subscript is modulo n.

We have c0 = γ0 = n, which we call the “trivial” autocorrelations. It is not
hard to show that γk = ck + cn−k. Also note that |cn−1| = |s0sn−1| = 1.

We can either seek complex sequences with periodic autocorrelations near
zero, or with aperiodic autocorrelations near zero. If γk = 0 for all k 6= 0,
we say S is a perfect sequence. If |ck| ≤ 1 for all k 6= 0, we say S is a
generalized Barker sequence. If we further have sMj = 1 for all M , we say S
is a polyphase Barker sequence.

Given a complex sequence S, two natural measures of the closeness to zero
of the aperiodic autocorrelations are as follows:

P (S) = max
0<k<n−1

|ck| ,

T (S) =
∑

0<k≤n−1

|ck|2 ,

which we respectively call the peak sidelobe level (PSL) and total side-
lobe energy (TSE). (Some authors define the TSE to be twice our value,
since they also define c−k = ck.) One can also define the merit factor of
the sequence S, which in our notation is

F (S) =
n2

2 · T (S)
.

We define three functions of n:

Pmin(n) = min
S
P (S),

Tmin(n) = min
S
T (S),

Fmax(n) = max
S

F (S) =
n2

2 · Tmin(S)
,
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where the extremum is taken over all complex sequences of length n. These
are mathematically well-defined (the “space” of all complex sequences of
length n is the product of n copies of the unit circle, and is hence compact)
but explicit computation of the extrema appears very difficult.

It would be of interest to have good bounds for the growth rates of the
functions Pmin(n) and Tmin(n).

If S is a generalized Barker sequence of length n, then P (S) ≤ 1 and T (S) ≤
n−1. Therefore, if there is an infinite family of generalized Barker sequences,
their merit factor would be at least n2/(2(n− 1)) ∼ n/2.

Polyphase Barker sequences have been found for all lengths up to N , where
the value of N has been gradually increasing. For example, Friese [4] found
polyphase Barker sequences of all lengths up to 36, but conjectured that they
do not exist for significantly higher lengths. However, Borwein and Ferguson
[2] found polyphase Barker sequences of all lengths up to 63, and Nunn and
Coxson [7] found polyphase Barker sequences of lengths 64 to 70, as well
as 72, 76, and 77. It is unknown whether there exist generalized Barker
sequences for every length n.

Thus, we have Pmin(n) ≤ 1 for all n ≤ 70, and possibly for larger n. However,
the best known asymptotic upper bound in the literature appears to be of
the form Pmin(n) = O(

√
n). The existence of an infinite family of polyphase

sequences with PSL bounded above by O(
√
n) was shown by Turyn [9], and

the fact that the Chu sequence of length n has PSL asymptotic to 0.480261
√
n

was shown by Mow and Li [5].

It has been empirically observed [1, 8] that Chu sequences, and some related
sequences, appear to have merit factor that grows like a constant times

√
n,

or equivalently, their TSE appears to grow like a constant times n3/2.

The main purpose of this note is to provide an analytic proof that, if S is
the Chu sequence of length n, we have a bound of the form

T (S) =
∑
k 6=0

|ck|2 ≤ Bn3/2

that holds for all n (where B is constant). This implies Tmin(n) ≤ Bn3/2.
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3 Proof of Main Result

Main result. Let S be the Chu sequence of length n, as defined in [3]. Then
the total sidelobe energy of S is bounded by

T (S) ≤ 8

3π3/2
· n3/2 +O(n)

≈ 0.4788989922n3/2 +O(n)

and the merit factor of S is bounded below by

F (S) =
n2

2T (S)
≥ C
√
n

where C is asymptotic to 3π3/2/16 ≈ 1.0440615 when n→∞.

Proof. As in [3], for each positive integer n, the Chu sequence of length n
is the sequence S = (s0, s1, . . . , sn−1), where

sj =


e
( j2

2n

)
if n is even,

e
(j(j+1)

2n

)
if n is odd,

where e(t) is shorthand for ei2πt.

Assume k 6= 0. As proved in [3], the Chu sequences satisfy γk = 0 for all k.
This implies that |cn−k| = |ck|. Now note that in general, cn−k is a sum of k
terms of absolute value at most 1. Therefore |ck| = |cn−k| ≤ k.

Using some relatively straightforward manipulations (see, e.g., the beginning
of Section IV in [6], or the proof of Theorem 2 in [10]) one can show that the
Chu sequences satisfy

|ck| =

∣∣∣∣∣∣∣
sin
(πk2

n

)
sin
(πk
n

)
∣∣∣∣∣∣∣ .

For convenience, we define the half-energy

H(S) =
∑

0<k<dn/2e

|ck|2 .
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Using the relation |cn−k| = |ck|, one can see that

T (S) =

{
2 ·H(S) if n is odd,

2 ·H(S) +
∣∣cn/2∣∣2 if n is even.

Now note that

∣∣cn/2∣∣ =

∣∣∣∣∣∣
sin
(πn

4

)
sin
(π

2

)
∣∣∣∣∣∣ =

∣∣∣sin(πn
4

)∣∣∣ ≤ 1.

The key is now to break the sum H(S) into two pieces

H(S) =
∑

1≤k≤dAn1/2e

|ck|2 +
∑

dAn1/2e<k<dn/2e

|ck|2

where A is a fixed positive real number yet to be determined.

Let m = dAn1/2e and let m2 = dn/2e − 1. Since |ck| ≤ k, we have∑
1≤k≤m

|ck|2 ≤
∑

1≤k≤m

k2 =
m3

3
+
m2

2
+
m

6
.

We now consider∑
m<k<dn/2e

|ck|2 =
∑

m<k≤m2

sin2
(πk2

n

)
csc2

(πk
n

)
≤

∑
m<k≤m2

csc2
(πk
n

)
.

This latter sum is equal to ∑
m<k≤m2

n csc2
(
π · k

n

)
· 1

n

which can be regarded as a Riemann sum. If the interval of real numbers
[m
n
, m2

n
] is divided into subintervals of width 1/n, then as k ranges through

the integer values m < k ≤ m2, the numbers k/n are the right endpoints of
the subintervals.
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Note that m2 ≤ (n − 1)/2 < n/2, and that m > 0. Therefore [m
n
, m2

n
]

is a subset of the interval (0, 1
2
), on which the function csc2(πt) is strictly

decreasing. It follows that we have

∑
m<k≤m2

n csc2
(
π · k

n

)
· 1

n
≤
∫ m2/n

m/n

n csc2(πt) dt

and the integral evaluates to[−n cot(πt)

π

]m2/n

m/n
=

n

π

[
cot
(πm
n

)
− cot

(πm2

n

)]
. (1)

On the interval (0, π
2
), the function cotx is positive and satisfies cotx < 1/x.

The quantity (1) can therefore be bounded above by

n

π
cot
(πm
n

)
<
n

π
· n
πm

=
n2

π2m
.

Combining our bounds, we conclude

H(S) <
m3

3
+
m2

2
+
m

6
+

n2

π2m
.

Since A
√
n ≤ m < A

√
n+ 1, we conclude

H(S) <
(A
√
n+ 1)3

3
+

(A
√
n+ 1)2

2
+
A
√
n+ 1

6
+

n2

π2A
√
n

(2)

which is a polynomial in
√
n of degree 3. The coefficient of the dominant

power n3/2 is
A3

3
+

1

π2A
.

Using elementary calculus, we find that the positive A that minimizes this
quantity is

A =
1√
π

and the minimum value itself is

A3

3
+

1

π2A
=

4

3π3/2
≈ 0.2394494961.

6



Choosing A = 1/
√
π, we then have an upper bound of the form

H(S) <
4

3π3/2
· n3/2 +O(n)

which implies

T (S) ≤ 2 ·H(S) + 1

<
8

3π3/2
· n3/2 +O(n)

≈ 0.4788989922 · n3/2 +O(n).

This implies that the merit factor F (S) asymptotically grows at least like

n2

2 · 8

3π3/2
· n3/2

=
3π3/2

16

√
n ≈ 1.044061500

√
n.

If we seek explicit bounds that are valid for all n, we can start by evaluating
the bound (2) when A = 1/

√
π. This gives

H(S) <
4

3π3/2
· n3/2 +

3

2π
· n+

13

6
√
π
· n1/2 + 1

and then since T (S) ≤ 2 ·H(S) + 1, we have

T (S) <
8

3π3/2
· n3/2 +

3

π
· n+

13

3
√
π
· n1/2 + 3.

A computation then reveals that we have, for example,

T (S) < 3.437207165 · n3/2 for all n ≥ 2,

T (S) < 0.8482098513 · n3/2 for all n ≥ 20,

T (S) < 0.5597074838 · n3/2 for all n ≥ 200,

T (S) < 0.5015078204 · n3/2 for all n ≥ 2000,

T (S) < 0.4857746665 · n3/2 for all n ≥ 20000,
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which implies

F (S) > 0.1454669376
√
n for all n ≥ 2,

F (S) > 0.5894767660
√
n for all n ≥ 20,

F (S) > 0.8933237710
√
n for all n ≥ 200,

F (S) > 0.9969934260
√
n for all n ≥ 2000,

F (S) > 1.029283811
√
n for all n ≥ 20000.

Antweiler and Bömer [1] observed that the merit factor of Chu sequences
appears empirically to grow like a constant times

√
n, but to the best of the

current author’s knowledge, the existing literature does not contain proofs
that the Chu sequences satisfy bounds of the form T (S) < Bn3/2 and F (S) >
C
√
n that hold for all n.

4 Conclusions and Further Questions

We have proved that the Chu sequences satisfy, in an asymptotic sense,

T (S) . 0.4788989922 · n3/2,

F (S) & 1.044061500
√
n.

Numerical evidence suggests the constants in front are not the best constants.
If we recall that

T (S) =
n−1∑
k=1

|ck|2 =
n−1∑
k=1

sin2
(πk2

n

)
csc2

(πk
n

)
,

then we can calculate T (n) numerically for certain values of n and compare
with n3/2. Doing this, for example, with n from 1000 to 1024 suggests

T (S) ≈ 0.318 · n3/2,

F (S) ≈ 1.57
√
n.

The empirical result F (S) ≈ 1.57
√
n was already noted in [1]. Furthermore,

it was shown in [8] that certain other sequences, related but not identical to
Chu sequences, appear to satisfy F (S) ≈ C

√
n for a larger constant C.
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We have shown that the function Tmin(n) is bounded above by a constant
times n3/2, and therefore that the function Fmax(n) is bounded below by a
constant times

√
n. It would be interesting to know whether this can be

improved. If there are polyphase Barker sequences of every length, then
Tmin(n) grows at most linearly in n.
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