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There was a midterm recently in the introductory linear algebra course at my
university. One subquestion, worth 3 of the midterm’s 40 points, was essentially
as follows.

We call a square matrix B nilpotent if Bm is equal to the zero matrix for some

positive integer m. Prove that if B is a nilpotent matrix, then detB = 0.

The students had just recently learned the definition and some basic properties
of determinants—including the fact that det(XY ) = detX · detY for square
matrices X and Y . Thus, an extremely short proof is possible. (Indeed, the
proof can be succinctly expressed without words as Bm = 0 =⇒ (detB)m =
det(Bm) = 0 =⇒ detB = 0.)

However, most of the students failed to find the short proof, and many of them
instead went off on strange tangents. In fairness, the students had only very
recently learned about determinants, so a fact such as det(XY ) = detX ·detY ,
although they had learned it, was not yet an “old friend” to them. Thus, it
didn’t immediately occur to them to use that fact, and they missed the short
proof with its “you see it or you don’t” quality.

I suspect that another, more general, phenomenon is also at work here. A great
many instructors have noted that undergraduates often have few difficulties with
computational matters, but have a lot of trouble with proofs. This includes
difficulty in coming up with a proof even when there exists one which is quite
brief, with no messy or technical details. It’s as though the students, on some
level, are under the misapprehension that the only way to prove detB = 0 is
to calculate det B, by a cofactor expansion or similar means. I’ve sometimes
tried to remedy this by telling linear algebra students, “You don’t always have
to worry about the entries of the matrix. Maybe there’s a short proof where
you get to completely ignore the individual entries.”

In their answers to the midterm question, some students tried to show detB = 0
by showing B must have a row or a column of zeros, which led many of them
to make the incorrect claim that any nilpotent matrix must have this property.
Perhaps part of the reason is that the most “obvious” examples of nilpotent
matrices are things like





0 x y
0 0 z
0 0 0



 or





0 0 0
x 0 0
y z 0



 .

The simplest counterexample to the students’ claim is perhaps

[

1 1
−1 −1

]

,



which we ended up writing on many students’ papers. A 3 by 3 example is




1 1 1
1 1 1

−2 −2 −2



 .

However, those last two matrices have the property that their square is the zero
matrix. Following the philosophy that it’s good to amass a large arsenal of
examples and counterexamples, one is naturally led to the following question.

Can we find, for each integer n ≥ 2, an n by n nilpotent matrix B whose

index is exactly n, and which also has the property that none of the matrices

B, B2, . . . , Bn−1 have any zero entries?

Here and throughout, when we speak of the “index” of a nilpotent matrix B,
we mean the smallest integer m with the property that Bm is the zero matrix.
(Incidentally, is it obvious that the index of an n by n nilpotent matrix can
be at most n? It looks like it “should” be obvious, and I did manage to find
a short proof, but it turned out to be a little trickier than I anticipated. The
short proof appears at the end of this article.)

The purpose of this article is to show the answer to the above question is “yes”
by exhibiting a family of matrices with integer entries that have the desired
property. If we express this problem in the language of linear transformations,
it is hardly shocking that such examples exist. For the beginning linear algebra
student, however, who may tend to think of multiplication of matrices in a more
concrete or computational way, it may come as a bit of a surprise.

I will begin by simply exhibiting the family of matrices I found. If B is the n
by n matrix in the sequence

[

2 −1
4 −2

]

,





2 2 −2
5 1 −3
1 5 −3



 ,









2 2 2 −3
6 1 1 −4
1 6 1 −4
1 1 6 −4









,













2 2 2 2 −4
7 1 1 1 −5
1 7 1 1 −5
1 1 7 1 −5
1 1 1 7 −5













, . . .

then Bn is the zero matrix, whereas none of the matrices B, . . . , Bn−1 have any
zero entries.

Where does such a matrix B come from? If we let v1, . . . ,vn denote columns 1
through n respectively of the matrix















2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2















then B is an integer multiple of the unique matrix that sends vk to vk+1 (when
1 ≤ k ≤ n − 1) and sends vn to 0. The rest of the article consists of verifying
that in general, this has the desired property.



We let In denote the n × n identity matrix, and we let Jn denote the n × n
matrix whose entries are all 1. Observe that J2

n = nJn. We now define

An := In + Jn =















2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2















and, as before, we denote the first, second, . . . , nth column of An by v1, v2,
. . . , vn respectively.

It’s not difficult to show An is nonsingular. For instance, it’s straightforward
to directly check that v1,v2, . . . ,vn are linearly independent. More briefly, we
can show

A−1
n =

1

n + 1

(

(n + 1)In − Jn

)

= In −
1

n + 1
Jn

by observing that

An ·
(

(n + 1)In − Jn

)

=
(

In + Jn

)(

(n + 1)In − Jn

)

= (n + 1)I2
n − InJn + (n + 1)JnIn − J2

n

= (n + 1)In − Jn + (n + 1)Jn − nJn

= (n + 1)In.

We now define Bn to be the unique n × n matrix satisfying

Bnv1 = (n + 1)v2

Bnv2 = (n + 1)v3

...

Bnvn−1 = (n + 1)vn

Bnvn = 0

or equivalently, in matrix form,

BnAn = (n + 1)[v2 v3 · · · vn 0],

implying that

Bn = [v2 v3 · · · vn 0](n + 1)A−1
n

= [v2 v3 · · · vn 0]
(

(n + 1)In − Jn

)

.

Now certainly, any column vector x in R
n can be written uniquely in the form

x =

n
∑

k=1

ckvk,



and we then have

Br

n
x = (n + 1)r

n−r
∑

k=1

ckvk+r if 1 ≤ r ≤ n − 1, (1)

Bn

n
x = 0,

implying that Bn is nilpotent of index n.

I claim that if 1 ≤ r ≤ n − 1, then none of the entries of Br
n

are zero. To
show this, it suffices to show that Br

n
x has no zero entries when x is one of the

standard basis vectors for R
n (that is, when x is one of the columns of In).

If x is one of the columns of In, then we have

x = c1v1 + c2v2 + · · · + cnvn

where [c1 c2 · · · cn]T is one of the columns of A−1
n

, implying that ck = n/(n+1)
for one value of k and ck = −1/(n + 1) for all other values of k. Let’s say

ck =

{

n/(n + 1) if k = ℓ

−1/(n + 1) if 1 ≤ k ≤ ℓ − 1 or ℓ + 1 ≤ k ≤ n.

We now fix r satisfying 1 ≤ r ≤ n − 1, and we wish to show that Br
n
x has no

zero entries.

From (1), we know that

Br

n
x = (n + 1)r

n−r
∑

k=1

ckvk+r,

so it suffices to show
∑

n−r

k=1
ckvk+r has no zero entries.

We now observe that

n−r
∑

k=1

ckvk+r =







∑

n−r

k=1

(

−1

n+1

)

vk+r =: p if ℓ > n − r

vℓ+r +
∑n−r

k=1

(

−1

n+1

)

vk+r =: q if ℓ ≤ n − r.

We now note that p = −1

n+1

∑n−r

k=1
vk+r , and

∑n−r

k=1
vk+r is a vector all of whose

entries are either n − r or n − r + 1, so p is a vector whose entries are all
−(n − r)/(n + 1) or −(n − r + 1)/(n + 1). Thus none of the entries of p are
zero, and since none of the entries of p are −1 or −2, we also get that none of
the entries of q are zero. QED.

We close this article with the promised short proof that an n×n nilpotent matrix
has index at most n. If B is an n× n nilpotent matrix of index exactly k, then
Bk−1 is not the zero matrix, and hence there exists a vector x such that Bk−1x

is nonzero. We then claim that the k nonzero vectors

x, Bx, B2x, . . . , Bk−1x



are linearly independent elements of R
n, which would imply k ≤ n as required.

If c0, . . . , ck−1 are scalars satisfying

c0x + c1Bx + · · · + ck−2B
k−2x + ck−1B

k−1x = 0,

then we also have the k − 1 equations

c0Bx + c1B
2x + · · · + ck−2B

k−1x + ck−1B
kx = 0,

c0B
2x + c1B

3x + · · · + ck−2B
kx + ck−1B

k+1x = 0,

...

c0B
k−2x + c1B

k−1x + · · · + ck−2B
2k−4x + ck−1B

2k−3x = 0,

c0B
k−1x + c1B

kx + · · · + ck−2B
2k−3x + ck−1B

2k−2x = 0.

But the last of these k− 1 equations says c0B
k−1x = 0, implying c0 = 0. Then,

since the previous equation says c0B
k−2x+ c1B

k−1x = 0, we can conclude that
c1 = 0. Continuing in this way, we can conclude that c0, . . . , ck−1 must all be
zero, establishing linear independence as claimed.


