
Nontrivial Solutions of Pell’s Equation

This document consists of a self-contained proof that Pell’s equation

x2 − dy2 = 1

always has nontrivial integer solutions x, y when d is a fixed positive integer
that is not a square. By a “nontrivial” solution, we mean (x, y) 6= (±1, 0).

For example, a nontrivial solution of x2 − 5y2 = 1 is (x, y) = (±9,±4), and
a nontrivial solution of x2 − 13y2 = 1 is (x, y) = (±649,±180). How can we
prove nontrivial solutions exist for all positive nonsquare d?

The methods in the proof are not original with me, and indeed date back to
people like Lagrange and Dirichlet. I just think it’s nice to have self-contained
proofs of famous results, and in this case, the proof is a great introduction
to both the algebraic and the analytic sides of number theory.

Fact.
√
d is irrational. Proof: If

√
d = a/b, then a2 = db2, which says a

square is equal to a nonsquare.

Definition. Let
R = {α=x+y

√
d : x, y ∈ Z}.

From now on, the variables u, v, w, x, y, and their subscripted versions, will
always denote integers.

Fact. R is closed under multiplication. Proof:

(x+ y
√
d)(u+ v

√
d) = (xu+ dyv) + (xv + yu)

√
d. (1)

Fact. If α ∈ R, the representation of α as x+ y
√
d is unique.

Proof: If x+y
√
d = x1 +y1

√
d, then (x−x1)+(y−y1)

√
d = 0. If y−y1 = 0,

then x−x1 = 0 and we are done. If y−y1 6= 0, then (x−x1)/(y−y1) = −
√
d,

contradicting the irrationality of
√
d.

Definition. If α ∈ R, say α = x+ y
√
d, then the conjugate of α, denoted

α, is defined by α = x− y
√
d.
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Fact. For α, β ∈ R, we have αβ = α · β.

Proof: Suppose α = x + y
√
d and β = u + v

√
d. Then α = x − y

√
d and

β = u− v
√
d. We then observe

αβ = (xu+ dyv) + (xv + yu)
√
d using (1)

so αβ = (xu+ dyv)− (xv + yu)
√
d.

But also, we have

α · β = (x− y
√
d)(u− v

√
d)

= (xu+ dyv)− (xv + yu)
√
d.

Definition. If α ∈ R, say α = x+y
√
d, then the norm of α, denoted N(α),

is defined by

N(α) = α · α = (x+ y
√
d)(x− y

√
d) = x2 − dy2.

Notice that N(α) is always an integer (positive, negative, or zero).

Notice also that we can now rephrase our goal as:

GOAL: Show that there exists α ∈ R satisfying N(α) = 1, other than
α = ±1.

Fact. For α, β ∈ R, we have N(αβ) = N(α)N(β). That is, the norm
function is multiplicative.

Proof: N(αβ) = αβ · αβ = α · β · α · β = α · α · β · β = N(α)N(β).

Fact. The only α ∈ R satisfying N(α) = 0 is α = 0.

Proof: Suppose α = x + y
√
d with N(α) = x2 − dy2 = 0. If y = 0, then

also x = 0 and we are done. If y 6= 0, then x2/y2 = d, contradicting the
irrationality of

√
d.

How do we find nontrivial α ∈ R whose norm is 1? Naively, we might try
to “divide” two elements of the same norm. However, R need not be closed
under division.
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Suppose α, β ∈ R with β 6= 0. Let α = x + y
√
d and β = u + v

√
d, so both

u+ v
√
d and u− v

√
d are nonzero. We then have

x+ y
√
d

u+ v
√
d

=
(x+ y

√
d)(u− v

√
d)

u2 − dv2
=

(xu− dyv) + (yu− xv)
√
d

u2 − dv2
= s+ t

√
d

where s =
xu− dyv
u2 − dv2

and t =
yu− xv
u2 − dv2

are rational numbers.

We will have s + t
√
d ∈ R if both xu − dyv and yu − xv are divisible by

u2 − dv2, or equivalently, congruent to 0 mod u2 − dv2. The following gives
a sufficient condition that guarantees this.

Fact. Suppose x ≡ u (mod u2 − dv2) and y ≡ v (mod u2 − dv2). Then

s =
xu− dyv
u2 − dv2

and t =
yu− xv
u2 − dv2

are both integers, so
x+ y

√
d

u+ v
√
d

= s+ t
√
d is

an element of R.

Proof: If x ≡ u (mod u2 − dv2) and y ≡ v (mod u2 − dv2) then, working
mod u2 − dv2, we have

xu− dyv ≡ uu− dvv = u2 − dv2 ≡ 0,

yu− xv ≡ vu− uv = 0.

Corollary. Suppose α = x+ y
√
d and β = u+ v

√
d are elements of R with

the same nonzero norm (x2−dy2 = u2−dv2 6= 0), and suppose that α 6= ±β.
Suppose further that x ≡ u (mod u2−dv2) and y ≡ v (mod u2−dv2). Then

x+ y
√
d

u+ v
√
d

= s+ t
√
d ∈ R (s+ t

√
d 6= ±1)

so x+y
√
d = (s+ t

√
d)(u+v

√
d) and N(x+y

√
d) = N(s+ t

√
d)N(u+v

√
d),

and therefore s + t
√
d 6= ±1 is a nontrivial element of R with norm 1, and

hence provides a nontrivial solution of Pell’s equation.

So our goal becomes finding α = x + y
√
d, β = u + v

√
d ∈ R with the same

nonzero norm, such that α 6= ±β and such that the ordered pairs (x, y) and
(u, v) are congruent mod u2 − dv2 (defining congruence of ordered pairs in
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the natural way). How do we do this? We now switch from algebraic to
analytic thinking.

Lemma. Let y be a positive integer and let ξ > 0 be an irrational number.
(We will use ξ =

√
d.) Then there exist integers x′, y′ with y′ > y and

|x′ − y′ξ| < 1

y′
.

Proof: For each k = 1, 2, 3, . . . , y, define ak to be the nearest integer to kξ,
and define εk = |ak − kξ|. Then choose y1 to be an integer satisfying

y1 > max
{ 1

ε1
,

1

ε2
, . . . ,

1

εy

}
,

so 1/y1 < εk = |ak − kξ| for all k ≤ y. Next, for each m = 1, 2, . . . , y1, we
write mξ as

mξ = bmξc+ {mξ}
where bmξc is an integer and 0 < {mξ} < 1 (the usual “floor” and “fractional
part” of mξ). Now consider the y1 numbers

{ξ}, {2ξ}, {3ξ}, . . . , {y1ξ}.

Those are irrational numbers in (0, 1), and they are all distinct. (If we had
{uξ} = {vξ}, then uξ−vξ would be an integer, contradicting the irrationality
of ξ.) Therefore, there must exist u, v with 1 ≤ u < v ≤ y1 such that

|{uξ} − {vξ}| < 1

y1
.

We now consider

vξ = bvξc+ {vξ}
uξ = buξc+ {uξ}

(v − u)ξ = bvξc − buξc+ {vξ} − {uξ}

Let x′ be the integer bvξc−buξc and let y′ be the positive integer v−u < y1.
We then have

x′ − y′ξ = {uξ} − {vξ}

|x′ − y′ξ| = |{uξ} − {vξ}| < 1

y1
<

1

y′
.
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It remains to show that y′ > y. If y′ = k ≤ y, then

|x′ − y′ξ| = |x′ − kξ| ≥ |ak − kξ| = εk >
1

y1

where ak is the closest integer to kξ. This contradicts |x′ − y′ξ| < 1/y1.
Therefore y′ > y, and the proof of the lemma is complete.

Now, we construct an infinite sequence of ordered pairs

{(x0, y0), (x1, y1), (x2, y2), . . .}

in the following way. We let y0 = 1 and let x0 be the closest integer to
√
d.

Then we have |x0−y0
√
d| < 1/y0. Next, if (xn, yn) is defined, we let xn+1, yn+1

be the integers x′, y′ generated by applying the lemma to the situation where
y = yn and ξ =

√
d. We then have

y0 < y1 < y2 < · · ·

so all pairs (xn, yn) are distinct, and we have∣∣∣xn − yn√d∣∣∣ < 1

yn
for each n.

We now consider the norms of the numbers xn + yn
√
d. The norm is always

an integer, and we have∣∣∣N(xn + yn
√
d)
∣∣∣ =

∣∣∣xn + yn
√
d
∣∣∣ ∣∣∣xn − yn√d∣∣∣ .

We now observe that∣∣∣xn + yn
√
d
∣∣∣ ≤ ∣∣∣xn − yn√d∣∣∣+

∣∣∣2yn√d∣∣∣
≤ 1

yn
+ 2yn

√
d

≤ yn + 2yn
√
d = (2

√
d+ 1)yn.

We therefore have∣∣∣N(xn + yn
√
d)
∣∣∣ ≤ (2

√
d+ 1)yn ·

1

yn
= 2
√
d+ 1.
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That is, N(xn +yn
√
d) is an integer between −(2

√
d+1) and 2

√
d+1. So we

have infinitely many numbers xn + yn
√
d, but only finitely many possibilities

for their norms. By the pigeonhole principle, there is an infinite subsequence

{(xj0 , yj0), (xj1 , yj1), (xj2 , yj2), . . .}

such that N(xjn + yjn
√
d) = N(xj0 + yj0

√
d) for all n. Say N(xj0 + yj0

√
d) =

u2−dv2. Note that u2−dv2 is nonzero because none of the numbers xn+yn
√
d

are zero.

Next, we will apply the pigeonhole principle again. Consider (u2 − dv2)2

boxes, corresponding to pairs of integers (a, b) where 1 ≤ a ≤ u2 − dv2 and
1 ≤ b ≤ u2 − dv2. We put (xjn , yjn) in box (a, b) if we have xjn ≡ a and
yjn ≡ b mod u2 − dv2.

There are infinitely many (xjn , yjn) but finitely many boxes. Therefore there
exist m < n such that (xjm , yjm) and (xjn , yjn) are in the same box. Define

α = xjm + yjm
√
d and β = xjn + yjn

√
d. Note that β 6= ±α because we have

yjn > yjm > 0. Now α and β have the same nonzero norm u2−dv2, and they
satisfy xjm ≡ xjn and yjm ≡ yjn mod u2 − dv2. We have achieved our goal.
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