A proof of (a special case of) the Pólya-Vinogradov inequality Idris Mercer, DePaul University, imercer@depaul.edu

Let p be an odd prime, let \mathbb{Z}_p denote the integers mod p, and let \mathbb{Z}_p^* denote the set of nonzero elements of \mathbb{Z}_p , so $|\mathbb{Z}_p^*| = p - 1$. Half of the elements of \mathbb{Z}_p^* are squares, and half are nonsquares. (In fact, \mathbb{Z}_p^* is a cyclic group under multiplication, so if we pick a generator g, the squares are the even powers of g and the nonsquares are the odd powers of g.)

For any integer n, the Legendre symbol $\left(\frac{n}{p}\right)$ is defined by

$$\left(\frac{n}{p}\right) = \begin{cases}
1 & \text{if } n \text{ is a nonzero square mod } p, \\
-1 & \text{if } n \text{ is a nonsquare mod } p, \\
0 & \text{if } n \equiv 0 \mod p.
\end{cases}$$

This function is an example of a mod p Dirichlet character, so we will write $\chi(n) = \left(\frac{n}{p}\right)$. Note that we have $\chi(n+p) = \chi(n)$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers m and n.

For example, if p = 11, the elements of \mathbb{Z}_p^* can be written $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$, so the nonzero squares mod 11 are

$$(\pm 1)^2 = 1, \ (\pm 2)^2 = 4, \ (\pm 3)^2 = 9, \ (\pm 4)^2 = 16 \equiv 5, \ (\pm 5)^2 = 25 \equiv 3$$

and we can make the following table.

If we do this for various p, the sequence of +1's and -1's generated by $\chi(n) = \left(\frac{n}{p}\right)$ usually tends to look random. Informally speaking, we expect the +1's and -1's to 'balance', but sometimes the same sign happens to appear a large number of times in an interval. In the above example, we see that for $n \in \{1, 2, 3, 4, 5\}$, we have +1 appearing four times and -1 appearing only once. That is, if p = 11, then the sum

$$\sum_{n=1}^{5} \chi(n) = +1 - 1 + 1 + 1 + 1$$

is not much less than the sum of five +1's. What can happen for a general odd prime p? Can our table begin with one of the two signs appearing an unusually large number of times? In other words, can the partial sum

$$\sum_{n=1}^m \chi(n)$$

be almost as extreme as the sum of m + 1's or m - 1's? (Notice that we may as well assume $m . We have <math>\sum_{n=1}^{p} \chi(n) = \sum_{n=1}^{p-1} \chi(n) = 0$ because of the equal number of squares and nonsquares, and then $\sum_{n=1}^{kp} \chi(n) = 0$ by periodicity.) For example, if we look at the first half of our table, can

$$\sum_{n=1}^{(p-1)/2} \chi(n)$$

be very close to $+\frac{p-1}{2}$ or $-\frac{p-1}{2}$? The Pólya-Vinogradov inequality says no. It says that there is a constant C such that for all p, we have

$$\left|\sum_{n=1}^{m} \chi(n)\right| \le C\sqrt{p}\log p$$

for all m. (In fact, the Pólya-Vinogradov inequality applies to nonprincipal characters other than the Legendre symbol, but I believe that the special case $\chi(n) = (\frac{n}{p})$ adequately illustrates the ideas of the proof.)

How do we prove the Pólya-Vinogradov inequality? In a sense, the difficulty is that although there are many nice properties of sums of the form $\sum_{n=0}^{p-1}$ or $\sum_{n=1}^{p-1}$, a 'partial' sum of the form $\sum_{n=1}^{m}$ may be harder to deal with. We get around this difficulty with the help of Fourier analysis.

Throughout the rest of this paper, p is a fixed odd prime, $\chi(n)$ denotes $(\frac{n}{p})$, and ω denotes $e^{2\pi i/p}$. The symbol \equiv always refers to congruence mod p.

Lemma 1. For integers k and n, we have

$$\frac{1}{p}\sum_{j=0}^{p-1}\omega^{j(k-n)} = \begin{cases} 1 & \text{if } k \equiv n, \\ 0 & \text{if } k \not\equiv n. \end{cases}$$

Proof. If $k \equiv n$, then the left side is the average of p copies of 1. If $k \not\equiv n$, then the left side is invariant under multiplication by $\omega^{k-n} \neq 1$.

If we use Iverson bracket notation, where [P] = 1 if the statement P is true, and [P] = 0 if the statement P is false, then Lemma 1 can be written

$$[k \equiv n] = \frac{1}{p} \sum_{j=0}^{p-1} \omega^{j(k-n)}.$$

We now observe that if $n \in \{0, 1, \dots, p-1\}$, then

$$\chi(n) = \sum_{k=0}^{p-1} [k \equiv n] \chi(k)$$

$$\implies \sum_{n=1}^{m} \chi(n) = \sum_{n=1}^{m} \sum_{k=0}^{p-1} [k \equiv n] \chi(k)$$

$$= \sum_{n=1}^{m} \sum_{k=0}^{p-1} \frac{1}{p} \sum_{j=0}^{p-1} \omega^{j(k-n)} \chi(k)$$

$$= \frac{1}{p} \sum_{j=0}^{p-1} \left(\sum_{n=1}^{m} \sum_{k=0}^{p-1} \omega^{-jn} \omega^{jk} \chi(k) \right)$$

$$= \frac{1}{p} \sum_{j=0}^{p-1} \left(\sum_{n=1}^{m} \omega^{-jn} \cdot \sum_{k=0}^{p-1} \omega^{jk} \chi(k) \right)$$

Notice that if j = 0, we have

$$\sum_{k=0}^{p-1} \omega^{jk} \chi(k) = \sum_{k=0}^{p-1} \chi(k) = 0$$

so we in fact have

$$\sum_{n=1}^{m} \chi(n) = \frac{1}{p} \sum_{j=1}^{p-1} \bigg(\sum_{n=1}^{m} \omega^{-jn} \cdot \sum_{k=0}^{p-1} \omega^{jk} \chi(k) \bigg).$$
(1)

We now will consider two separate problems: the problem of bounding

$$\sum_{n=1}^{m} \omega^{-jn}$$

and the problem of bounding

$$\sum_{k=0}^{p-1} \omega^{jk} \chi(k).$$

The latter sum is called a 'Gauss sum' and is much studied in number theory. We will deal with the former sum first.

If we define

$$S = \sum_{n=1}^{m} \omega^{-jn} = \omega^{-j} + \omega^{-2j} + \dots + \omega^{-mj}$$

then we also have

$$\omega^{j}S = 1 + \omega^{-j} + \dots + \omega^{-(m-1)j}$$
$$S - \omega^{j}S = \omega^{-mj} - 1$$
$$S = \frac{\omega^{-mj} - 1}{1 - \omega^{j}}$$
$$|S| = \frac{|\omega^{-mj} - 1|}{|1 - \omega^{j}|} \le \frac{2}{|1 - \omega^{j}|}.$$

Now observe that

$$|1 - \omega^{j}|^{2} = (1 - \omega^{j})(\overline{1 - \omega^{j}}) = (1 - \omega^{j})(1 - \omega^{-j})$$
$$= 1 - \omega^{j} - \omega^{-j} + 1 = 2 - 2\operatorname{Re}(\omega^{j}) = 2 - 2\cos\left(\frac{2\pi j}{p}\right)$$

 \mathbf{SO}

$$\left|1 - \omega^{j}\right| = \sqrt{2 - 2\cos(2\pi j/p)}$$

In general, for $t \in [0, \pi]$, one can verify that

$$\cos t \le 1 - \frac{2t^2}{\pi^2}$$

which rearranges to give

$$2 - 2\cos t \ge \frac{4t^2}{\pi^2}$$
$$\sqrt{2 - 2\cos t} \ge \frac{2t}{\pi}$$
$$\frac{1}{\sqrt{2 - 2\cos t}} \le \frac{\pi}{2t}.$$

If $j \in \{1, \ldots, \frac{p-1}{2}\}$, then the angle $\frac{2\pi j}{p}$ is in $[0, \pi]$, and we can say

$$|S| \le \frac{2}{|1 - \omega^j|} = \frac{2}{\sqrt{2 - 2\cos(\frac{2\pi j}{p})}} \le \frac{2\pi}{2(\frac{2\pi j}{p})} = \frac{p}{2j}.$$
 (2)

If, however, $j \in \{\frac{p+1}{2}, \dots, p-1\}$, then we can write j = p - j' for some $j' \in \{1, \dots, \frac{p-1}{2}\}$, so the angle $\frac{2\pi j'}{p}$ is in $[0, \pi]$, and we have

$$|S| \le \frac{2}{|1 - \omega^j|} = \frac{2}{|1 - \omega^{p-j'}|} = \frac{2}{|1 - \omega^{-j'}|} = \frac{2}{|1 - \omega^{j'}|} \le \frac{p}{2j'}.$$
 (3)

We now consider the problem of bounding or evaluating the Gauss sum

$$G_j = \sum_{k=0}^{p-1} \omega^{jk} \chi(k)$$

where $j \neq 0$. (We already observed that $G_0 = 0$.) Since $\chi(0) = 0$, we have

$$G_j = \sum_{k=1}^{p-1} \omega^{jk} \chi(k).$$

Now observe that if $j \in \{1, \ldots, p-1\}$, we have

$$\chi(j)G_j = \sum_{k=1}^{p-1} \omega^{jk} \chi(k) \chi(j) = \sum_{k=1}^{p-1} \omega^{jk} \chi(jk).$$

Since $j \in \mathbb{Z}_p^*$, as k goes from 1 to p-1, then jk will range through the p-1 elements of \mathbb{Z}_p^* in some order. This means that we have

$$\chi(j)G_j = \sum_{k=1}^{p-1} \omega^{jk} \chi(jk) = \sum_{k=1}^{p-1} \omega^k \chi(k) = G_1$$

so $G_j = G_1/\chi(j) = G_1 \cdot \chi(j) = \pm G_1$. So if we can bound or evaluate G_1 , we can bound or evaluate all the G_j .

The trick now is to consider

$$\sum_{j=0}^{p-1} G_j^2 = \sum_{j=1}^{p-1} G_j^2 = \sum_{j=1}^{p-1} G_1^2 = (p-1)G_1^2.$$

That sum can also be written

$$\sum_{j=0}^{p-1} \left(\sum_{k=0}^{p-1} \omega^{jk} \chi(k) \cdot \sum_{\ell=0}^{p-1} \omega^{j\ell} \chi(\ell) \right)$$
$$= \sum_{j=0}^{p-1} \sum_{k=0}^{p-1} \sum_{\ell=0}^{p-1} \omega^{j(k+\ell)} \chi(k\ell)$$
$$= \sum_{k=0}^{p-1} \sum_{\ell=0}^{p-1} \chi(k\ell) \sum_{j=0}^{p-1} \omega^{j(k+\ell)}.$$
(4)

By Lemma 1, the sum $\sum_{j=0}^{p-1} \omega^{j(k+\ell)}$ is zero unless $\ell \equiv -k$, in which case it has the value p. It follows that the triple sum (4) is equal to

$$\sum_{k=0}^{p-1} \chi(k \cdot (-k)) \cdot p = p \sum_{k=0}^{p-1} \chi(-k^2).$$
(5)

If k = 0, then $\chi(-k^2) = 0$, and if $k \neq 0$, then $\chi(-k^2) = \chi(-1)\chi(k^2) = \chi(-1)$. Therefore the sum (5) is equal to

$$p(p-1)\chi(-1)$$

and we conclude that we have

$$(p-1)G_1^2 = p(p-1)\chi(-1)$$

 $G_1^2 = \chi(-1)p$

so G_1 is a complex number of modulus \sqrt{p} . (Note that $\chi(-1)$ can be +1 or -1, so G_1 can be one of the four numbers $\pm \sqrt{p}$ or $\pm i\sqrt{p}$. In fact, it is possible to determine which of those four values G_1 has, but we do not need that here.) Therefore for each $j \in \{1, \ldots, p-1\}$, G_j is a complex number of modulus \sqrt{p} .

The remaining step is to put everything together.

We finally return to estimating the sum (1). We have

$$\begin{split} \left| \sum_{n=1}^{m} \chi(n) \right| &\leq \frac{1}{p} \sum_{j=1}^{p-1} \left(\left| \sum_{n=1}^{m} \omega^{-jn} \cdot \sum_{k=0}^{p-1} \omega^{jk} \chi(k) \right| \right) \\ &= \frac{1}{p} \sum_{j=1}^{p-1} \left(\left| \sum_{n=1}^{m} \omega^{-jn} \right| \cdot \left| \sum_{k=0}^{p-1} \omega^{jk} \chi(k) \right| \right) \\ &= \frac{1}{p} \sum_{j=1}^{p-1} \left(\left| \sum_{n=1}^{m} \omega^{-jn} \right| \cdot \sqrt{p} \right) \\ &= \frac{1}{\sqrt{p}} \sum_{j=1}^{p-1} \left| \sum_{n=1}^{m} \omega^{-jn} \right| \\ &= \frac{1}{\sqrt{p}} \left(\left| \sum_{j=1}^{p-1} \left| \sum_{n=1}^{m} \omega^{-jn} \right| + \sum_{j=(p+1)/2}^{p-1} \left| \sum_{n=1}^{m} \omega^{-jn} \right| \right). \end{split}$$

We then use (2) to conclude

$$\sum_{j=1}^{(p-1)/2} \left| \sum_{n=1}^m \omega^{-jn} \right| \le \frac{p}{2} \cdot \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{(p-1)/2} \right)$$

and we use (3) to conclude

$$\sum_{j=(p+1)/2}^{p-1} \left| \sum_{n=1}^m \omega^{-jn} \right| \le \frac{p}{2} \cdot \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{(p-1)/2} \right).$$

It follows that we have

$$\left|\sum_{n=1}^{m} \chi(n)\right| \le \frac{1}{\sqrt{p}} \cdot \frac{2p}{2} \cdot \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{(p-1)/2}\right)$$
$$= \sqrt{p} \cdot \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{(p-1)/2}\right)$$

and the harmonic sum $1 + \frac{1}{2} + \cdots + \frac{1}{(p-1)/2}$ can be bounded above by a multiple of log p.