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Let p be an odd prime, let Z, denote the integers mod p, and let Z; denote
the set of nonzero elements of Z,, so }ZZ‘ = p—1. Half of the elements of Z;
are squares, and half are nonsquares. (In fact, Z; is a cyclic group under
multiplication, so if we pick a generator g, the squares are the even powers
of g and the nonsquares are the odd powers of g.)

For any integer n, the Legendre symbol (%) is defined by
1 if n is a nonzero square mod p,
n
(}—)) = ¢ —1 if n is a nonsquare mod p,

0 if n =0 mod p.

This function is an example of a mod p Dirichlet character, so we will write
x(n) = (). Note that we have x(n +p) = x(n) and x(mn) = x(m)x(n) for
all integers m and n.

For example, if p = 11, the elements of Z can be written {41, £2, £3, +-4, £5},
so the nonzero squares mod 11 are

(£1)? =1, (£2)* =4, (£3)* =9, (£4)>=16=5, (£5)* =25=3

and we can make the following table.

n [0 1 2 3 4 5 6 7 8 9 10
x(n) ]O 41 -1 +1 +1 41 -1 -1 -1 +1 -1

If we do this for various p, the sequence of +1’s and —1’s generated by
x(n) = (%) usually tends to look random. Informally speaking, we expect
the 4+1’s and —1’s to ‘balance’, but sometimes the same sign happens to
appear a large number of times in an interval. In the above example, we see
that forn € {1,2,3,4,5}, we have +1 appearing four times and —1 appearing
only once. That is, if p = 11, then the sum

5
d x(n)=+1-1+1+1+1

n=1



is not much less than the sum of five +1’s. What can happen for a general
odd prime p? Can our table begin with one of the two signs appearing an
unusually large number of times? In other words, can the partial sum

be almost as extreme as the sum of m +1’s or m —1’s? (Notice that we may
as well assume m < p — 1. We have 3P_ x(n) = 32°_} x(n) = 0 because
of the equal number of squares and nonsquares, and then Zip: L X(n) =0 by

periodicity.) For example, if we look at the first half of our table, can

(p—1)/2

> x(n)

n=1

be very close to —1—1%1 or —1%1? The Pélya-Vinogradov inequality says no.
It says that there is a constant C' such that for all p, we have

m

> x(n)

n=1

< Cy/plogp

for all m. (In fact, the Pélya-Vinogradov inequality applies to nonprincipal
characters other than the Legendre symbol, but I believe that the special
case x(n) = () adequately illustrates the ideas of the proof.)

How do we prove the Pdélya-Vinogradov inequality? In a sense, the difficulty
is that although there are many nice properties of sums of the form ZZ;E or
Plog ‘partial’ sum of the form > "  may be harder to deal with. We get

n=1"

around this difficulty with the help of Fourier analysis.

Throughout the rest of this paper, p is a fixed odd prime, x(n) denotes (%),
and w denotes e?™/P. The symbol = always refers to congruence mod p.

Lemma 1. For integers k and n, we have

—1 .
lpz:wj(k_n) _ 1 ifk=n,
p 0 ifk#n.



Proof. If k = n, then the left side is the average of p copies of 1. If k # n,
then the left side is invariant under multiplication by w*=™ # 1. O]

If we use Iverson bracket notation, where [P] = 1 if the statement P is true,
and [P] = 0 if the statement P is false, then Lemma 1 can be written

ey
k=n]==) w®m,
>

We now observe that if n € {0,1,...,p— 1}, then

p—1
x(n) = ) [k=nlx(k)
k=0
m m p—1
= D x(n) =) > [k=nlx(k)
n=1 n=1 k=0
m p—1 1 p—1
=3 D> > W (k)
=1 k=0 P =0
1 p—1 m p—1
=2 (L eetan)
P50 \ W=l =0
1 p—1 m p—1
= (ZW” ' w”“x(/f))
P = k=0
Notice that if j = 0, we have
p—1 p—1
> wrx(k) = x(k)=0
k=0 k=0

so we in fact have

gx(n) -1 (iw ~ :i_:wjkxw)). (1)



and the problem of bounding

p—1

> wFx(k).

k=0
The latter sum is called a ‘Gauss sum’ and is much studied in number theory.
We will deal with the former sum first.

If we define N
S = Zw—jn —wI I ™
n=1
then we also have
WS =14wd 4+... 4 (mDJ
w ™ — 1
S=-—°
1 —wl
5 = e = 1l 2
1—wi| — |1 —wi|

Now observe that
[1—w" = (1 —)T - i) = (1 - )1 —w)
2mg

:1—wj—w’j+1:2—2Re(wj):2—2(:os<—>
p

SO

|1 —w!| = /2 — 2cos(27 /p).
In general, for t € [0, 7|, one can verify that

22
cost <1— —
T
which rearranges to give
42
2—2cost > —
T

2t

V2 —2cost > —
s

1 T
<

2t

2 —2cost



Ifje{l,..., ’%1}, then the angle % is in [0, 7|, and we can say

1€ o = = S g — ®
W 2 — 2cos(%) (S5 J
If, however, j € {’%1, ...,p — 1}, then we can write j = p — j' for some
. —1 2ng’ . -
J € {l,..., 5=}, so the angle TJ is in [0, 7|, and we have
2 2 2 2
S| < - — — <Ly
1 —wi| |[1—wr| [1—w| |1—-w| = 2y

We now consider the problem of bounding or evaluating the Gauss sum
p—1
G = 3w
k=0
where j # 0. (We already observed that Gy = 0.) Since x(0) = 0, we have
p—1
Gj; = Zuﬂkx(k‘).
k=1
Now observe that if j € {1,...,p — 1}, we have
p—1 p—1
XG)G =D W x(k)x(d) = Y w*x(ik).
k=1 k=1

Since j € Z,, as k goes from 1 to p — 1, then jk will range through the p —1
elements of Z; in some order. This means that we have

p—1 p—1
X(NG =Y w (k) =) whx(k) = Gy
k=1 k=1

so G = Gi1/x(j) = G1 - x(j) = £G1. So if we can bound or evaluate Gy, we
can bound or evaluate all the Gj.

The trick now is to consider

p—1 p—1 p—1

YE=Y =3 G=p-1)G

Jj=0 J=1 J=1



That sum can also be written

= x(k£) Z WO, (4)

By Lemma 1, the sum Z?;é W *+0) g zero unless ¢ = —k, in which case it
has the value p. It follows that the triple sum (4) is equal to

"Xk (R) o= p Y A (5)

If k = 0, then x(—k?) = 0, and if k # 0, then x(—k?) = x(—1)x(k*) = x(-1).
Therefore the sum (5) is equal to

p(p— 1)x(=1)

and we conclude that we have

(p—1)GF =pp—1)x(-1)
G =x(—1p

so G is a complex number of modulus /p. (Note that x(—1) can be +1
or —1, so G can be one of the four numbers £,/p or £i,/p. In fact, it is
possible to determine which of those four values G; has, but we do not need
that here.) Therefore for each j € {1,...,p—1}, G; is a complex number of
modulus /p.

The remaining step is to put everything together.



We finally return to estimating the sum (1). We have

m 1 p—1 m 4 p—1 '
ROIEES D () SO DI
n=1 pj:l n=1 k=0
1 p—1 m ' p—1 '
S )
P N W= k=0
1 p—1 m '
> ([Xe|-va)
p Jj= n=1
= —_— wi‘]n
VP j=1 |n=1
1 (r—1)/2| m _ p—1 m A
- (X e+ X [e)
=1 =1 j=1)/2 In=1
We then use (2) to conclude
(p-1)/2| m
_j p (1 1
jn| < (_ LT —>
jzl ;w e RV R P V5

and we use (3) to conclude

w —_ e | — —_— “ .. _— .
=2 \173 ~1)/2
j=+1)/2 =1 =1/

It follows that we have

iXOL) <L 2_p <l+1_{_ +;>
— TP 2 1 2 (p—1)/2
1 1 1
=i (1 3+ + o)
and the harmonic sum 1+%+---—|—m can be bounded above by a multiple

of log p.



