Bounding the peak sidelobe level of binary sequences of all
lengths

Idris Mercer
Florida International University
imercer@fiu.edu

Abstract

Improving upon 2010 results of Alon, Litsyn, and Shpunt, it was
shown in 2014 by Schmidt that asymptotically, almost all binary se-
quences of length n have peak sidelobe level close to v/2nlogn. One
specific result of Alon, Litsyn, and Shpunt is that if we fix ¢ > 0,
then almost all binary sequences of length n have peak sidelobe level
at most \/2n(logn — (1.5 —¢)loglogn), in the sense that the prob-
ability of not satisfying that bound approaches 0 as n approaches
infinity. In this note, we prove that for all sequence lengths n > 1,
there is a binary sequence of length n with peak sidelobe level at most
v/2n(logn — loglogn + 0.862).

By a binary sequence of length n, we mean an n-tuple

A= (ap,a1,...,a,_1)
where each a; is +1 or —1. For 0 < k < n — 1, we define the (acyclic or
aperiodic) autocorrelations of A by

n—k—1
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Informally, ¢, measures how much the sequence A resembles a version of itself
that has been shifted by k positions.

We let B,, denote the set of all 2" binary sequences of length n. For any
A € B, we have ¢y = n. We refer to c¢y,...,¢,_1 as the nontrivial auto-
correlations of A. An old problem, arising in communications engineering



but also of interest as a stand-alone combinatorial problem, involves trying
to find binary sequences in B, whose nontrivial autocorrelations are ‘close’
to zero in some sense.

For any A € B,,, we define the peak sidelobe level (PSL) of A by

u(A) = max e
We consider A to be a ‘good’ sequence if pu(A) is small. If A is a constant
sequence, then trivially u(A) = n — 1, but very informally speaking, if A
is ‘random’ then u(A) tends to be significantly smaller than O(n). Many
authors have investigated upper bounds for p(A). (For an excellent survey,
see [3].) We might try to find upper bounds for p(A) that hold for some
sequences A € B,,, or that hold for almost all sequences A € B,,.

To make this more precise, we turn B,, into a probability space by supposing
the a; are independent Rademacher variables (i.e., random variables each
equally likely to be +1 or —1). This is equivalent to assigning equal weight
to each of the 2" sequences in B, and for any function f(n), the probability
that p(A) < f(n) is equal to the proportion of sequences A € B, that satisfy
u(A) < f(n). We say pu(A) < f(n) for ‘almost all’ sequences A € B, if

lim Pr{u(A) < f(n)] =1.

n—o0

We also define

pmin(n) = min 1u(A)

so then if p(A) < f(n) for a nonzero proportion of sequences A € B,, we
have :umin(n) S f(’fb)

In 2014, Schmidt proved [7] (improving upon previous results by Alon, Litsyn
& Shpunt [1], the current author [4], and Moon & Moser [5]) that if we fix
€ > 0, then the probability

Pr[(\/i— e)y/nlogn < u(A) < (\/§+e)\/nlogn} (1)

approaches 1 as n approaches infinity (informally, almost all sequences A €
B,, have peak sidelobe level ‘close’ to /2nlogn). Here and throughout this
article, ‘log’ means natural log.



Earlier, Schmidt [6] gave an explicit construction showing that for each n >
1, there is a sequence A € B, satisfying u(A) < /2nlog(2n). He also
gave numerical evidence for the conjecture that his sequences satisfy p(A) =
O(v/nloglogn). As pointed out in [3], several authors have conjectured that
there is an infinite family of binary sequences satisfying p(A) = O(y/n), but
this has not been proved. In fact, the best upper bounds that have been
proved to hold either for a positive proportion of sequences or for almost all
sequences appear to be of the form u(A) = O(yv/nlogn).

Because of the lower bound in (1), it is not possible to prove that almost all
sequences A € B, satisfy an upper bound of the form u(A) = o(v/nlogn).
However, if f(n) is a certain function of n that approaches infinity more
slowly than logn, it can be shown that almost all sequences A € B,, satisfy
n(A) < \/2n(logn — f(n)). One such result is Corollary 4.3 in [1], which
shows that if we fix £ > 0, then the proportion of sequences A € B,, satisfying

1(A) > v/2n(logn — (1.5 — ¢) loglog n)

is bounded above by a multiple of 1/(logn)®, and hence approaches 0 as
n approaches infinity. That is, in an asymptotic sense, almost all binary
sequences of length n satisfy

1(A) < v/2n(logn — (1.5 — ¢) loglog n).

In this note, we prove the following, which is not as good in an asymptotic
sense, but which holds for all lengths n > 1.

Proposition. For all n > 1, the proportion of sequences A € B,, satisfying

w(A) > v/2n(logn — loglog n + 0.862)

15 strictly less than 1. It follows that for all mn > 1, we have

fimin(1) < v/2n(logn — loglogn + 0.862).

In the proof of the proposition, we will need the following elementary lemma.

Lemma. If n > 1 and K is a constant, then

K —loglogn S —1

logn = elHl



Proof. Consider the function
K —logx
flo) = =—22

x
for x > 0. Using elementary calculus, we find

logz — (K +1)

f'(x)

K+1

which is negative when 0 < x < e and positive when x > eX*1. It follows

that for all x > 0, we have

f) 2 J) =

and therefore for all n > 1, we have

K —loglogn —1
S OB OEL _ flogn) > oy

logn

Proof of Proposition:

As mentioned before, we turn B,, into a probability space by supposing the
a; to be independent Rademacher variables, which is equivalent to assigning
equal weight to all 2" sequences in B,,.

Note that the autocorrelation
C = QoQk + A10k+1 + = + Ap—k—10n—1

is a sum of n — k terms, each of which is £1. In fact, those n — k terms
are independent. (This is straightforward but not quite trivial; for a proof,
see [4].) If 1 <k <mn —1, then ¢, is a sum of k independent Rademacher
variables, so we can use Chernoff-type bounds (see, e.g., Corollary A.1.2 in
Appendix A of [2]) to conclude that if A > 0, then

Pr{|c,—r] > A] < 2exp(—A*/2k).

Let A = v/2nv(n), where we define
(n) =logn — loglogn + 0.862.
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We then have
Pr[|cn_k| > Zn@b(n)} < 2exp(—ny(n)/k).

We call a sequence A € B,, ‘good’ if u(A) < /2n(n), and ‘bad’ otherwise.
Then A is bad if and only if |¢,—x| > v/2n¢(n) for some k =1,...,n — 1.
An overestimate for Pr[A is bad] is

ZPr[|cn_k| > \/anb(n)} < i?exp(—nw(n) /k).

Now, consider the function

g(x) = 2exp(—y(n)/z)

on the interval z € £, 1]. The function g(z) is an increasing function of z on
that interval, so a left-endpoint Riemann sum will be an underestimate for
an integral:

k=1
el 1

— g(—) < n/ g(x)dx
=1 1/n

— iQeXp(—n@/}(n)/k) < 2”/1 exp(—v(n)/z)dz

— Pr[A is bad] < Zn/l exp(—¢(n)/x)dx.



We will now perform the substitution u = ¥ (n)/x on this integral. We have
u=1(n)r !
du = —(n)r dx
—(2*/¢(n))du = dz
r=1/n= u=mnp(n)
r=1=u=1(n)
z=v(n)/u
7t = (¥(n)"/u’
*/1h(n) = ¥(n) /v’
dz = —(2*/¢(n))du = — (¢ (n) /u*)du

and so the above integral becomes

¥(n)

exp(—u) < _¥ln) ) du

on /1 1nexp(—¢(n)/x)dx = on /n

Y(n)
np(n)

:2n@b(n)/ —du.
u(m)  ue

That is, we have

mp(n)

Pr[A is bad] < an(n)/ du.

wmy —ure

Now since the function h(u) = 1/u?e* decreases very rapidly, a rather crude
upper bound will suffice. We have

/ > du </ > du.
Y(n) UTE Y(n) UE

On the interval u € (¢(n), 00), we have u? > (¢)(n))?, so we have

R | 1 © 1
——d Uy = —(n)
Awu%”“%wmvéwe T Wm))©

This implies that we have

2n
(¥(n))?  p(n)er)”

Pr[A is bad] < 2ny(n) -



Now since 1(n) = logn — loglogn + 0.862, we have

exp (1(n)) = exp(log n) exp(— log log n) exp(0.862)

= n(logn)~teX

where for brevity, we write K = 0.862. We then have

Y(n)e?™ = (logn — loglogn + K) -n(logn) e

K —logl
(14 K loglosmy
logn

and then our lemma implies

Now note that ) )
e — 2 =082 _ Z 5 9200001
(&

so we have
2n 2n 2

< = <1
P(n)er™ = 2.00001n  2.00001

which completes the proof of the proposition.
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