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Abstract

Improving upon 2010 results of Alon, Litsyn, and Shpunt, it was
shown in 2014 by Schmidt that asymptotically, almost all binary se-
quences of length n have peak sidelobe level close to

√
2n log n. One

specific result of Alon, Litsyn, and Shpunt is that if we fix ε > 0,
then almost all binary sequences of length n have peak sidelobe level
at most

√
2n(log n− (1.5− ε) log log n), in the sense that the prob-

ability of not satisfying that bound approaches 0 as n approaches
infinity. In this note, we prove that for all sequence lengths n > 1,
there is a binary sequence of length n with peak sidelobe level at most√

2n(log n− log log n + 0.862).

By a binary sequence of length n, we mean an n-tuple

A = (a0, a1, . . . , an−1)

where each aj is +1 or −1. For 0 ≤ k ≤ n − 1, we define the (acyclic or
aperiodic) autocorrelations of A by

ck =
n−k−1∑
j=0

ajaj+k.

Informally, ck measures how much the sequence A resembles a version of itself
that has been shifted by k positions.

We let Bn denote the set of all 2n binary sequences of length n. For any
A ∈ Bn, we have c0 = n. We refer to c1, . . . , cn−1 as the nontrivial auto-
correlations of A. An old problem, arising in communications engineering
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but also of interest as a stand-alone combinatorial problem, involves trying
to find binary sequences in Bn whose nontrivial autocorrelations are ‘close’
to zero in some sense.

For any A ∈ Bn, we define the peak sidelobe level (PSL) of A by

µ(A) = max
1≤k≤n−1

|ck| .

We consider A to be a ‘good’ sequence if µ(A) is small. If A is a constant
sequence, then trivially µ(A) = n − 1, but very informally speaking, if A
is ‘random’ then µ(A) tends to be significantly smaller than O(n). Many
authors have investigated upper bounds for µ(A). (For an excellent survey,
see [3].) We might try to find upper bounds for µ(A) that hold for some
sequences A ∈ Bn, or that hold for almost all sequences A ∈ Bn.

To make this more precise, we turn Bn into a probability space by supposing
the aj are independent Rademacher variables (i.e., random variables each
equally likely to be +1 or −1). This is equivalent to assigning equal weight
to each of the 2n sequences in Bn, and for any function f(n), the probability
that µ(A) ≤ f(n) is equal to the proportion of sequences A ∈ Bn that satisfy
µ(A) ≤ f(n). We say µ(A) ≤ f(n) for ‘almost all’ sequences A ∈ Bn if

lim
n→∞

Pr
[
µ(A) ≤ f(n)

]
= 1.

We also define
µmin(n) = min

A∈Bn
µ(A)

so then if µ(A) ≤ f(n) for a nonzero proportion of sequences A ∈ Bn, we
have µmin(n) ≤ f(n).

In 2014, Schmidt proved [7] (improving upon previous results by Alon, Litsyn
& Shpunt [1], the current author [4], and Moon & Moser [5]) that if we fix
ε > 0, then the probability

Pr
[
(
√

2− ε)
√
n log n ≤ µ(A) ≤ (

√
2 + ε)

√
n log n

]
(1)

approaches 1 as n approaches infinity (informally, almost all sequences A ∈
Bn have peak sidelobe level ‘close’ to

√
2n log n). Here and throughout this

article, ‘log’ means natural log.

2



Earlier, Schmidt [6] gave an explicit construction showing that for each n >
1, there is a sequence A ∈ Bn satisfying µ(A) ≤

√
2n log(2n). He also

gave numerical evidence for the conjecture that his sequences satisfy µ(A) =
O(
√
n log log n). As pointed out in [3], several authors have conjectured that

there is an infinite family of binary sequences satisfying µ(A) = O(
√
n), but

this has not been proved. In fact, the best upper bounds that have been
proved to hold either for a positive proportion of sequences or for almost all
sequences appear to be of the form µ(A) = O(

√
n log n).

Because of the lower bound in (1), it is not possible to prove that almost all
sequences A ∈ Bn satisfy an upper bound of the form µ(A) = o(

√
n log n).

However, if f(n) is a certain function of n that approaches infinity more
slowly than log n, it can be shown that almost all sequences A ∈ Bn satisfy
µ(A) ≤

√
2n(log n− f(n)). One such result is Corollary 4.3 in [1], which

shows that if we fix ε > 0, then the proportion of sequences A ∈ Bn satisfying

µ(A) >
√

2n(log n− (1.5− ε) log log n)

is bounded above by a multiple of 1/(log n)ε, and hence approaches 0 as
n approaches infinity. That is, in an asymptotic sense, almost all binary
sequences of length n satisfy

µ(A) ≤
√

2n(log n− (1.5− ε) log log n).

In this note, we prove the following, which is not as good in an asymptotic
sense, but which holds for all lengths n > 1.

Proposition. For all n > 1, the proportion of sequences A ∈ Bn satisfying

µ(A) >
√

2n(log n− log log n+ 0.862)

is strictly less than 1. It follows that for all n > 1, we have

µmin(n) ≤
√

2n(log n− log log n+ 0.862).

In the proof of the proposition, we will need the following elementary lemma.

Lemma. If n > 1 and K is a constant, then

K − log log n

log n
≥ −1

eK+1
.
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Proof. Consider the function

f(x) =
K − log x

x

for x > 0. Using elementary calculus, we find

f ′(x) =
log x− (K + 1)

x2

which is negative when 0 < x < eK+1 and positive when x > eK+1. It follows
that for all x > 0, we have

f(x) ≥ f(eK+1) =
−1

eK+1

and therefore for all n > 1, we have

K − log log n

log n
= f(log n) ≥ −1

eK+1
.

Proof of Proposition:

As mentioned before, we turn Bn into a probability space by supposing the
aj to be independent Rademacher variables, which is equivalent to assigning
equal weight to all 2n sequences in Bn.

Note that the autocorrelation

ck = a0ak + a1ak+1 + · · ·+ an−k−1an−1

is a sum of n − k terms, each of which is ±1. In fact, those n − k terms
are independent. (This is straightforward but not quite trivial; for a proof,
see [4].) If 1 ≤ k ≤ n− 1, then cn−k is a sum of k independent Rademacher
variables, so we can use Chernoff-type bounds (see, e.g., Corollary A.1.2 in
Appendix A of [2]) to conclude that if λ > 0, then

Pr
[
|cn−k| > λ

]
< 2 exp(−λ2/2k).

Let λ =
√

2nψ(n), where we define

ψ(n) = log n− log log n+ 0.862.
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We then have

Pr
[
|cn−k| >

√
2nψ(n)

]
< 2 exp(−nψ(n)/k).

We call a sequence A ∈ Bn ‘good’ if µ(A) ≤
√

2nψ(n), and ‘bad’ otherwise.

Then A is bad if and only if |cn−k| >
√

2nψ(n) for some k = 1, . . . , n − 1.
An overestimate for Pr[A is bad] is

n−1∑
k=1

Pr
[
|cn−k| >

√
2nψ(n)

]
<

n−1∑
k=1

2 exp(−nψ(n)/k).

Now, consider the function

g(x) = 2 exp(−ψ(n)/x)

on the interval x ∈ [ 1
n
, 1]. The function g(x) is an increasing function of x on

that interval, so a left-endpoint Riemann sum will be an underestimate for
an integral:

n−1∑
k=1

g
(k
n

) 1

n
<

∫ 1

1/n

g(x)dx

=⇒
n−1∑
k=1

g
(k
n

)
< n

∫ 1

1/n

g(x)dx

=⇒
n−1∑
k=1

2 exp(−nψ(n)/k) < 2n

∫ 1

1/n

exp(−ψ(n)/x)dx

=⇒ Pr[A is bad] < 2n

∫ 1

1/n

exp(−ψ(n)/x)dx.
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We will now perform the substitution u = ψ(n)/x on this integral. We have

u = ψ(n)x−1

du = −ψ(n)x−2dx

−
(
x2/ψ(n)

)
du = dx

x = 1/n⇒ u = nψ(n)

x = 1⇒ u = ψ(n)

x = ψ(n)/u

x2 =
(
ψ(n)

)2
/u2

x2/ψ(n) = ψ(n)/u2

dx = −
(
x2/ψ(n)

)
du = −

(
ψ(n)/u2

)
du

and so the above integral becomes

2n

∫ 1

1/n

exp(−ψ(n)/x)dx = 2n

∫ ψ(n)

nψ(n)

exp(−u)
(
− ψ(n)

u2

)
du

= 2nψ(n)

∫ nψ(n)

ψ(n)

1

u2eu
du.

That is, we have

Pr[A is bad] < 2nψ(n)

∫ nψ(n)

ψ(n)

1

u2eu
du.

Now since the function h(u) = 1/u2eu decreases very rapidly, a rather crude
upper bound will suffice. We have∫ nψ(n)

ψ(n)

1

u2eu
du <

∫ ∞
ψ(n)

1

u2eu
du.

On the interval u ∈ (ψ(n),∞), we have u2 > (ψ(n))2, so we have∫ ∞
ψ(n)

1

u2eu
du <

1

(ψ(n))2

∫ ∞
ψ(n)

e−udu =
1

(ψ(n))2
e−ψ(n).

This implies that we have

Pr[A is bad] < 2nψ(n) · 1

(ψ(n))2
e−ψ(n) =

2n

ψ(n)eψ(n)
.
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Now since ψ(n) = log n− log log n+ 0.862, we have

exp
(
ψ(n)

)
= exp(log n) exp(− log log n) exp(0.862)

= n(log n)−1eK

where for brevity, we write K = 0.862. We then have

ψ(n)eψ(n) =
(

log n− log log n+K
)
· n(log n)−1eK

= eK
(

1 +
K − log log n

log n

)
n

and then our lemma implies

ψ(n)eψ(n) ≥ eK
(

1 +
−1

eK+1

)
n =

(
eK − 1

e

)
n.

Now note that

eK − 1

e
= e0.862 − 1

e
> 2.00001

so we have
2n

ψ(n)eψ(n)
<

2n

2.00001n
=

2

2.00001
< 1

which completes the proof of the proposition.
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